Foveal Wavelet-Based Color Active Contour

A framework for active contour segmentation in vector-valued images is presented. It is known that the standard active contour is a powerful segmentation method, yet it is susceptible to weak edges and image noise. The proposed scheme uses foveal wavelets for an accurate detection of the edges singu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Maalouf, A., Carre, P., Augereau, B., Fernandez-Maloigne, C.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page I - 248
container_issue
container_start_page I - 245
container_title
container_volume 1
creator Maalouf, A.
Carre, P.
Augereau, B.
Fernandez-Maloigne, C.
description A framework for active contour segmentation in vector-valued images is presented. It is known that the standard active contour is a powerful segmentation method, yet it is susceptible to weak edges and image noise. The proposed scheme uses foveal wavelets for an accurate detection of the edges singularities of the image. The foveal wavelets introduced by Mallat (2000) are known by their high capability to precisely characterize the holder regularity of singularities. Therefore, image contours are accurately localized and are well discriminated from noise. Foveal wavelet coefficients are updated using the gradient descent algorithm to guide the snake deformation to the true boundaries of the objects being segmented. Thus, the curve flow corresponding to the proposed active contour holds formal existence, uniqueness, stability and correctness results in spite of the presence of noise where traditional snake approach may fail.
doi_str_mv 10.1109/ICIP.2007.4378937
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4378937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4378937</ieee_id><sourcerecordid>4378937</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-b927466eaddb21b3145a57da148bc4f7ca5b77d1630cc4bde35271425d79ecd3</originalsourceid><addsrcrecordid>eNpVj8tKxEAURNsXGMZ8gLjJ1kVi337d7uUYZjQwoIsBl0M_7kAkGkliwL834GxcFVUHiirGboFXANw9NHXzWgnOsVISrZN4xnKHFpRQCpbInLNMSAul1cpd_GPGXbIMtBClspZfs3wc3znngGahPGP3234m3xVvfqaOpvLRj5SKuu_6oVjHqZ1pMZ9T_z3csKuj70bKT7pi--1mXz-Xu5enpl7vyhZQT2VwApUx5FMKAoIEpb3G5EHZENURo9cBMYGRPEYVEkktcFmrEzqKSa7Y3V9tS0SHr6H98MPP4fRb_gJS0UXC</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Foveal Wavelet-Based Color Active Contour</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Maalouf, A. ; Carre, P. ; Augereau, B. ; Fernandez-Maloigne, C.</creator><creatorcontrib>Maalouf, A. ; Carre, P. ; Augereau, B. ; Fernandez-Maloigne, C.</creatorcontrib><description>A framework for active contour segmentation in vector-valued images is presented. It is known that the standard active contour is a powerful segmentation method, yet it is susceptible to weak edges and image noise. The proposed scheme uses foveal wavelets for an accurate detection of the edges singularities of the image. The foveal wavelets introduced by Mallat (2000) are known by their high capability to precisely characterize the holder regularity of singularities. Therefore, image contours are accurately localized and are well discriminated from noise. Foveal wavelet coefficients are updated using the gradient descent algorithm to guide the snake deformation to the true boundaries of the objects being segmented. Thus, the curve flow corresponding to the proposed active contour holds formal existence, uniqueness, stability and correctness results in spite of the presence of noise where traditional snake approach may fail.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 9781424414369</identifier><identifier>ISBN: 1424414369</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781424414376</identifier><identifier>EISBN: 1424414377</identifier><identifier>DOI: 10.1109/ICIP.2007.4378937</identifier><language>eng</language><publisher>IEEE</publisher><subject>active contour ; Active contours ; Active noise reduction ; color images ; Image color analysis ; Image edge detection ; Image segmentation ; Layout ; Object detection ; Retina ; segmentation ; Shape control ; wavelet ; Wavelet coefficients</subject><ispartof>2007 IEEE International Conference on Image Processing, 2007, Vol.1, p.I - 245-I - 248</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4378937$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4378937$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Maalouf, A.</creatorcontrib><creatorcontrib>Carre, P.</creatorcontrib><creatorcontrib>Augereau, B.</creatorcontrib><creatorcontrib>Fernandez-Maloigne, C.</creatorcontrib><title>Foveal Wavelet-Based Color Active Contour</title><title>2007 IEEE International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>A framework for active contour segmentation in vector-valued images is presented. It is known that the standard active contour is a powerful segmentation method, yet it is susceptible to weak edges and image noise. The proposed scheme uses foveal wavelets for an accurate detection of the edges singularities of the image. The foveal wavelets introduced by Mallat (2000) are known by their high capability to precisely characterize the holder regularity of singularities. Therefore, image contours are accurately localized and are well discriminated from noise. Foveal wavelet coefficients are updated using the gradient descent algorithm to guide the snake deformation to the true boundaries of the objects being segmented. Thus, the curve flow corresponding to the proposed active contour holds formal existence, uniqueness, stability and correctness results in spite of the presence of noise where traditional snake approach may fail.</description><subject>active contour</subject><subject>Active contours</subject><subject>Active noise reduction</subject><subject>color images</subject><subject>Image color analysis</subject><subject>Image edge detection</subject><subject>Image segmentation</subject><subject>Layout</subject><subject>Object detection</subject><subject>Retina</subject><subject>segmentation</subject><subject>Shape control</subject><subject>wavelet</subject><subject>Wavelet coefficients</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9781424414369</isbn><isbn>1424414369</isbn><isbn>9781424414376</isbn><isbn>1424414377</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVj8tKxEAURNsXGMZ8gLjJ1kVi337d7uUYZjQwoIsBl0M_7kAkGkliwL834GxcFVUHiirGboFXANw9NHXzWgnOsVISrZN4xnKHFpRQCpbInLNMSAul1cpd_GPGXbIMtBClspZfs3wc3znngGahPGP3234m3xVvfqaOpvLRj5SKuu_6oVjHqZ1pMZ9T_z3csKuj70bKT7pi--1mXz-Xu5enpl7vyhZQT2VwApUx5FMKAoIEpb3G5EHZENURo9cBMYGRPEYVEkktcFmrEzqKSa7Y3V9tS0SHr6H98MPP4fRb_gJS0UXC</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>Maalouf, A.</creator><creator>Carre, P.</creator><creator>Augereau, B.</creator><creator>Fernandez-Maloigne, C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200709</creationdate><title>Foveal Wavelet-Based Color Active Contour</title><author>Maalouf, A. ; Carre, P. ; Augereau, B. ; Fernandez-Maloigne, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-b927466eaddb21b3145a57da148bc4f7ca5b77d1630cc4bde35271425d79ecd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>active contour</topic><topic>Active contours</topic><topic>Active noise reduction</topic><topic>color images</topic><topic>Image color analysis</topic><topic>Image edge detection</topic><topic>Image segmentation</topic><topic>Layout</topic><topic>Object detection</topic><topic>Retina</topic><topic>segmentation</topic><topic>Shape control</topic><topic>wavelet</topic><topic>Wavelet coefficients</topic><toplevel>online_resources</toplevel><creatorcontrib>Maalouf, A.</creatorcontrib><creatorcontrib>Carre, P.</creatorcontrib><creatorcontrib>Augereau, B.</creatorcontrib><creatorcontrib>Fernandez-Maloigne, C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Maalouf, A.</au><au>Carre, P.</au><au>Augereau, B.</au><au>Fernandez-Maloigne, C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Foveal Wavelet-Based Color Active Contour</atitle><btitle>2007 IEEE International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>2007-09</date><risdate>2007</risdate><volume>1</volume><spage>I - 245</spage><epage>I - 248</epage><pages>I - 245-I - 248</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>9781424414369</isbn><isbn>1424414369</isbn><eisbn>9781424414376</eisbn><eisbn>1424414377</eisbn><abstract>A framework for active contour segmentation in vector-valued images is presented. It is known that the standard active contour is a powerful segmentation method, yet it is susceptible to weak edges and image noise. The proposed scheme uses foveal wavelets for an accurate detection of the edges singularities of the image. The foveal wavelets introduced by Mallat (2000) are known by their high capability to precisely characterize the holder regularity of singularities. Therefore, image contours are accurately localized and are well discriminated from noise. Foveal wavelet coefficients are updated using the gradient descent algorithm to guide the snake deformation to the true boundaries of the objects being segmented. Thus, the curve flow corresponding to the proposed active contour holds formal existence, uniqueness, stability and correctness results in spite of the presence of noise where traditional snake approach may fail.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2007.4378937</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-4880
ispartof 2007 IEEE International Conference on Image Processing, 2007, Vol.1, p.I - 245-I - 248
issn 1522-4880
2381-8549
language eng
recordid cdi_ieee_primary_4378937
source IEEE Electronic Library (IEL) Conference Proceedings
subjects active contour
Active contours
Active noise reduction
color images
Image color analysis
Image edge detection
Image segmentation
Layout
Object detection
Retina
segmentation
Shape control
wavelet
Wavelet coefficients
title Foveal Wavelet-Based Color Active Contour
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A14%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Foveal%20Wavelet-Based%20Color%20Active%20Contour&rft.btitle=2007%20IEEE%20International%20Conference%20on%20Image%20Processing&rft.au=Maalouf,%20A.&rft.date=2007-09&rft.volume=1&rft.spage=I%20-%20245&rft.epage=I%20-%20248&rft.pages=I%20-%20245-I%20-%20248&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=9781424414369&rft.isbn_list=1424414369&rft_id=info:doi/10.1109/ICIP.2007.4378937&rft_dat=%3Cieee_6IE%3E4378937%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424414376&rft.eisbn_list=1424414377&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4378937&rfr_iscdi=true