A Converged Recurrent Structure for CMACGBF and SCMACGBF

A new recurrent structure has been developed for both CMAC_GBF and S_CMAC_GBF in this paper. From the view of control, CMAC_GBF is capable of its excellent learning ability and superior of its control of complex nonlinear systems, but it is difficult for CMAC_GBF to solve problems of dynamic or time...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ching-Tsan Chiang, Tung-Sheng Chiang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1881
container_issue
container_start_page 1876
container_title
container_volume
creator Ching-Tsan Chiang
Tung-Sheng Chiang
description A new recurrent structure has been developed for both CMAC_GBF and S_CMAC_GBF in this paper. From the view of control, CMAC_GBF is capable of its excellent learning ability and superior of its control of complex nonlinear systems, but it is difficult for CMAC_GBF to solve problems of dynamic or time-relevant systems. This study develops recurrent structure for CMAC_GBF and S_CMAC_GBF with the method of employing the output of each hypercube to feedback to itself. This approach makes CMAC_GBF and S_CMAC_GBF to have the learning capability of temporal pattern sequences, and has more complex learning capability and is better than static feedforward networks. The design of recurrent structure and the driven of mathematic formulas and learning rules were accomplished in this paper. The proof of the learning convergence of the recurrent structure for CMAC_GBF and S CMAC_GBF is completed. The examples of temporal pattern sequences was demonstrated for the dynamic leaning capability of this recurrent structure.
doi_str_mv 10.1109/ISIE.2007.4374893
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4374893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4374893</ieee_id><sourcerecordid>4374893</sourcerecordid><originalsourceid>FETCH-ieee_primary_43748933</originalsourceid><addsrcrecordid>eNp9jrEOgkAQBdeoiah8gLG5HwD3uMODEgkqhY3YEwKLwSiYA0z8ey2wdZqXyWsGYMXR5hz9TZzEke0gKlsKJT1fjMD0lcelIyUq13XGMP-JxAkYDt8Ky-VCzcBs2xt-Eb7LEQ3wAhY29Yv0lQp2przXmuqOJZ3u867XxMpGs_AUhIfdnmV1wZJBljAts3tL5rALWO-jS3i0KiJKn7p6ZPqdDoHi__sBuR44Lw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Converged Recurrent Structure for CMACGBF and SCMACGBF</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ching-Tsan Chiang ; Tung-Sheng Chiang</creator><creatorcontrib>Ching-Tsan Chiang ; Tung-Sheng Chiang</creatorcontrib><description>A new recurrent structure has been developed for both CMAC_GBF and S_CMAC_GBF in this paper. From the view of control, CMAC_GBF is capable of its excellent learning ability and superior of its control of complex nonlinear systems, but it is difficult for CMAC_GBF to solve problems of dynamic or time-relevant systems. This study develops recurrent structure for CMAC_GBF and S_CMAC_GBF with the method of employing the output of each hypercube to feedback to itself. This approach makes CMAC_GBF and S_CMAC_GBF to have the learning capability of temporal pattern sequences, and has more complex learning capability and is better than static feedforward networks. The design of recurrent structure and the driven of mathematic formulas and learning rules were accomplished in this paper. The proof of the learning convergence of the recurrent structure for CMAC_GBF and S CMAC_GBF is completed. The examples of temporal pattern sequences was demonstrated for the dynamic leaning capability of this recurrent structure.</description><identifier>ISSN: 2163-5137</identifier><identifier>ISBN: 1424407540</identifier><identifier>ISBN: 9781424407545</identifier><identifier>EISBN: 9781424407552</identifier><identifier>EISBN: 1424407559</identifier><identifier>DOI: 10.1109/ISIE.2007.4374893</identifier><language>eng</language><publisher>IEEE</publisher><subject>Associative memory ; Control systems ; Convergence ; Hypercubes ; Mathematics ; Nonlinear control systems ; Nonlinear systems ; Output feedback ; Quantization ; Testing</subject><ispartof>2007 IEEE International Symposium on Industrial Electronics, 2007, p.1876-1881</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4374893$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4374893$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ching-Tsan Chiang</creatorcontrib><creatorcontrib>Tung-Sheng Chiang</creatorcontrib><title>A Converged Recurrent Structure for CMACGBF and SCMACGBF</title><title>2007 IEEE International Symposium on Industrial Electronics</title><addtitle>ISIE</addtitle><description>A new recurrent structure has been developed for both CMAC_GBF and S_CMAC_GBF in this paper. From the view of control, CMAC_GBF is capable of its excellent learning ability and superior of its control of complex nonlinear systems, but it is difficult for CMAC_GBF to solve problems of dynamic or time-relevant systems. This study develops recurrent structure for CMAC_GBF and S_CMAC_GBF with the method of employing the output of each hypercube to feedback to itself. This approach makes CMAC_GBF and S_CMAC_GBF to have the learning capability of temporal pattern sequences, and has more complex learning capability and is better than static feedforward networks. The design of recurrent structure and the driven of mathematic formulas and learning rules were accomplished in this paper. The proof of the learning convergence of the recurrent structure for CMAC_GBF and S CMAC_GBF is completed. The examples of temporal pattern sequences was demonstrated for the dynamic leaning capability of this recurrent structure.</description><subject>Associative memory</subject><subject>Control systems</subject><subject>Convergence</subject><subject>Hypercubes</subject><subject>Mathematics</subject><subject>Nonlinear control systems</subject><subject>Nonlinear systems</subject><subject>Output feedback</subject><subject>Quantization</subject><subject>Testing</subject><issn>2163-5137</issn><isbn>1424407540</isbn><isbn>9781424407545</isbn><isbn>9781424407552</isbn><isbn>1424407559</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9jrEOgkAQBdeoiah8gLG5HwD3uMODEgkqhY3YEwKLwSiYA0z8ey2wdZqXyWsGYMXR5hz9TZzEke0gKlsKJT1fjMD0lcelIyUq13XGMP-JxAkYDt8Ky-VCzcBs2xt-Eb7LEQ3wAhY29Yv0lQp2przXmuqOJZ3u867XxMpGs_AUhIfdnmV1wZJBljAts3tL5rALWO-jS3i0KiJKn7p6ZPqdDoHi__sBuR44Lw</recordid><startdate>200706</startdate><enddate>200706</enddate><creator>Ching-Tsan Chiang</creator><creator>Tung-Sheng Chiang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200706</creationdate><title>A Converged Recurrent Structure for CMACGBF and SCMACGBF</title><author>Ching-Tsan Chiang ; Tung-Sheng Chiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_43748933</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Associative memory</topic><topic>Control systems</topic><topic>Convergence</topic><topic>Hypercubes</topic><topic>Mathematics</topic><topic>Nonlinear control systems</topic><topic>Nonlinear systems</topic><topic>Output feedback</topic><topic>Quantization</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Ching-Tsan Chiang</creatorcontrib><creatorcontrib>Tung-Sheng Chiang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ching-Tsan Chiang</au><au>Tung-Sheng Chiang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Converged Recurrent Structure for CMACGBF and SCMACGBF</atitle><btitle>2007 IEEE International Symposium on Industrial Electronics</btitle><stitle>ISIE</stitle><date>2007-06</date><risdate>2007</risdate><spage>1876</spage><epage>1881</epage><pages>1876-1881</pages><issn>2163-5137</issn><isbn>1424407540</isbn><isbn>9781424407545</isbn><eisbn>9781424407552</eisbn><eisbn>1424407559</eisbn><abstract>A new recurrent structure has been developed for both CMAC_GBF and S_CMAC_GBF in this paper. From the view of control, CMAC_GBF is capable of its excellent learning ability and superior of its control of complex nonlinear systems, but it is difficult for CMAC_GBF to solve problems of dynamic or time-relevant systems. This study develops recurrent structure for CMAC_GBF and S_CMAC_GBF with the method of employing the output of each hypercube to feedback to itself. This approach makes CMAC_GBF and S_CMAC_GBF to have the learning capability of temporal pattern sequences, and has more complex learning capability and is better than static feedforward networks. The design of recurrent structure and the driven of mathematic formulas and learning rules were accomplished in this paper. The proof of the learning convergence of the recurrent structure for CMAC_GBF and S CMAC_GBF is completed. The examples of temporal pattern sequences was demonstrated for the dynamic leaning capability of this recurrent structure.</abstract><pub>IEEE</pub><doi>10.1109/ISIE.2007.4374893</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2163-5137
ispartof 2007 IEEE International Symposium on Industrial Electronics, 2007, p.1876-1881
issn 2163-5137
language eng
recordid cdi_ieee_primary_4374893
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Associative memory
Control systems
Convergence
Hypercubes
Mathematics
Nonlinear control systems
Nonlinear systems
Output feedback
Quantization
Testing
title A Converged Recurrent Structure for CMACGBF and SCMACGBF
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A59%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Converged%20Recurrent%20Structure%20for%20CMACGBF%20and%20SCMACGBF&rft.btitle=2007%20IEEE%20International%20Symposium%20on%20Industrial%20Electronics&rft.au=Ching-Tsan%20Chiang&rft.date=2007-06&rft.spage=1876&rft.epage=1881&rft.pages=1876-1881&rft.issn=2163-5137&rft.isbn=1424407540&rft.isbn_list=9781424407545&rft_id=info:doi/10.1109/ISIE.2007.4374893&rft_dat=%3Cieee_6IE%3E4374893%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424407552&rft.eisbn_list=1424407559&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4374893&rfr_iscdi=true