Improving Transient Response of Model Reference Neuro-Controller via Constrained Optimization

A robust adaptation algorithm based on error normalization is introduced to update the weights of model reference neural network controller. Tracking error is normalized by a variable normalizing gain specified by solving a constrained optimization problem. The so-called piecewise quadratic cost fun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Koofigar, H.R., Ahmadzadeh, M.R., Askari, J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 208
container_issue
container_start_page 203
container_title
container_volume
creator Koofigar, H.R.
Ahmadzadeh, M.R.
Askari, J.
description A robust adaptation algorithm based on error normalization is introduced to update the weights of model reference neural network controller. Tracking error is normalized by a variable normalizing gain specified by solving a constrained optimization problem. The so-called piecewise quadratic cost function is proposed as the performance index to improve the transient response specifications. The conditions for robust convergence, saturation limit of actuators and maximum possible speed of response form the constraints of the problem in terms of the variable normalizing gain. Simulation results provided, demonstrate the improvements in transient behavior of control signal and output response obtained by the method, even in the presence of disturbances and parameter variations.
doi_str_mv 10.1109/ISIE.2007.4374599
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4374599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4374599</ieee_id><sourcerecordid>4374599</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-3e081a287975bd74ec59f10d6ed19997022ddbfd25aee7820a3eae7edf9f975e3</originalsourceid><addsrcrecordid>eNpFkN9KwzAchSMqOOceQLzJC7Tmb9NcypizMB3ovJSRLr9IoE1KUgf69BYceHX4Pjjn4iB0S0lJKdH3zVuzKhkhqhRcCan1GbqmgglBlJT6_B8EuUAzRiteSMrVFVrk7FtCSaXEZGfoo-mHFI8-fOJdMiF7CCN-hTzEkAFHh5-jhW4yDhKEA-AX-EqxWMYwpth1kPDRGzxhHpPxASzeDqPv_Y8ZfQw36NKZLsPilHP0_rjaLZ-KzXbdLB82hadKjgUHUlPDaqWVbK0ScJDaUWIrsFRrrQhj1rbOMmkAVM2I4WBAgXXaTRXgc3T3t-sBYD8k35v0vT9dw38BeQFX1A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Improving Transient Response of Model Reference Neuro-Controller via Constrained Optimization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Koofigar, H.R. ; Ahmadzadeh, M.R. ; Askari, J.</creator><creatorcontrib>Koofigar, H.R. ; Ahmadzadeh, M.R. ; Askari, J.</creatorcontrib><description>A robust adaptation algorithm based on error normalization is introduced to update the weights of model reference neural network controller. Tracking error is normalized by a variable normalizing gain specified by solving a constrained optimization problem. The so-called piecewise quadratic cost function is proposed as the performance index to improve the transient response specifications. The conditions for robust convergence, saturation limit of actuators and maximum possible speed of response form the constraints of the problem in terms of the variable normalizing gain. Simulation results provided, demonstrate the improvements in transient behavior of control signal and output response obtained by the method, even in the presence of disturbances and parameter variations.</description><identifier>ISSN: 2163-5137</identifier><identifier>ISBN: 1424407540</identifier><identifier>ISBN: 9781424407545</identifier><identifier>EISBN: 1424407559</identifier><identifier>EISBN: 9781424407552</identifier><identifier>DOI: 10.1109/ISIE.2007.4374599</identifier><language>eng</language><publisher>IEEE</publisher><subject>Constraint optimization ; Convergence ; Cost function ; Error correction ; Gain ; Neural networks ; Performance analysis ; Robust control ; Robustness ; Transient response</subject><ispartof>2007 IEEE International Symposium on Industrial Electronics, 2007, p.203-208</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4374599$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4374599$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Koofigar, H.R.</creatorcontrib><creatorcontrib>Ahmadzadeh, M.R.</creatorcontrib><creatorcontrib>Askari, J.</creatorcontrib><title>Improving Transient Response of Model Reference Neuro-Controller via Constrained Optimization</title><title>2007 IEEE International Symposium on Industrial Electronics</title><addtitle>ISIE</addtitle><description>A robust adaptation algorithm based on error normalization is introduced to update the weights of model reference neural network controller. Tracking error is normalized by a variable normalizing gain specified by solving a constrained optimization problem. The so-called piecewise quadratic cost function is proposed as the performance index to improve the transient response specifications. The conditions for robust convergence, saturation limit of actuators and maximum possible speed of response form the constraints of the problem in terms of the variable normalizing gain. Simulation results provided, demonstrate the improvements in transient behavior of control signal and output response obtained by the method, even in the presence of disturbances and parameter variations.</description><subject>Constraint optimization</subject><subject>Convergence</subject><subject>Cost function</subject><subject>Error correction</subject><subject>Gain</subject><subject>Neural networks</subject><subject>Performance analysis</subject><subject>Robust control</subject><subject>Robustness</subject><subject>Transient response</subject><issn>2163-5137</issn><isbn>1424407540</isbn><isbn>9781424407545</isbn><isbn>1424407559</isbn><isbn>9781424407552</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkN9KwzAchSMqOOceQLzJC7Tmb9NcypizMB3ovJSRLr9IoE1KUgf69BYceHX4Pjjn4iB0S0lJKdH3zVuzKhkhqhRcCan1GbqmgglBlJT6_B8EuUAzRiteSMrVFVrk7FtCSaXEZGfoo-mHFI8-fOJdMiF7CCN-hTzEkAFHh5-jhW4yDhKEA-AX-EqxWMYwpth1kPDRGzxhHpPxASzeDqPv_Y8ZfQw36NKZLsPilHP0_rjaLZ-KzXbdLB82hadKjgUHUlPDaqWVbK0ScJDaUWIrsFRrrQhj1rbOMmkAVM2I4WBAgXXaTRXgc3T3t-sBYD8k35v0vT9dw38BeQFX1A</recordid><startdate>200706</startdate><enddate>200706</enddate><creator>Koofigar, H.R.</creator><creator>Ahmadzadeh, M.R.</creator><creator>Askari, J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200706</creationdate><title>Improving Transient Response of Model Reference Neuro-Controller via Constrained Optimization</title><author>Koofigar, H.R. ; Ahmadzadeh, M.R. ; Askari, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-3e081a287975bd74ec59f10d6ed19997022ddbfd25aee7820a3eae7edf9f975e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Constraint optimization</topic><topic>Convergence</topic><topic>Cost function</topic><topic>Error correction</topic><topic>Gain</topic><topic>Neural networks</topic><topic>Performance analysis</topic><topic>Robust control</topic><topic>Robustness</topic><topic>Transient response</topic><toplevel>online_resources</toplevel><creatorcontrib>Koofigar, H.R.</creatorcontrib><creatorcontrib>Ahmadzadeh, M.R.</creatorcontrib><creatorcontrib>Askari, J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Koofigar, H.R.</au><au>Ahmadzadeh, M.R.</au><au>Askari, J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improving Transient Response of Model Reference Neuro-Controller via Constrained Optimization</atitle><btitle>2007 IEEE International Symposium on Industrial Electronics</btitle><stitle>ISIE</stitle><date>2007-06</date><risdate>2007</risdate><spage>203</spage><epage>208</epage><pages>203-208</pages><issn>2163-5137</issn><isbn>1424407540</isbn><isbn>9781424407545</isbn><eisbn>1424407559</eisbn><eisbn>9781424407552</eisbn><abstract>A robust adaptation algorithm based on error normalization is introduced to update the weights of model reference neural network controller. Tracking error is normalized by a variable normalizing gain specified by solving a constrained optimization problem. The so-called piecewise quadratic cost function is proposed as the performance index to improve the transient response specifications. The conditions for robust convergence, saturation limit of actuators and maximum possible speed of response form the constraints of the problem in terms of the variable normalizing gain. Simulation results provided, demonstrate the improvements in transient behavior of control signal and output response obtained by the method, even in the presence of disturbances and parameter variations.</abstract><pub>IEEE</pub><doi>10.1109/ISIE.2007.4374599</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2163-5137
ispartof 2007 IEEE International Symposium on Industrial Electronics, 2007, p.203-208
issn 2163-5137
language eng
recordid cdi_ieee_primary_4374599
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Constraint optimization
Convergence
Cost function
Error correction
Gain
Neural networks
Performance analysis
Robust control
Robustness
Transient response
title Improving Transient Response of Model Reference Neuro-Controller via Constrained Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A57%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improving%20Transient%20Response%20of%20Model%20Reference%20Neuro-Controller%20via%20Constrained%20Optimization&rft.btitle=2007%20IEEE%20International%20Symposium%20on%20Industrial%20Electronics&rft.au=Koofigar,%20H.R.&rft.date=2007-06&rft.spage=203&rft.epage=208&rft.pages=203-208&rft.issn=2163-5137&rft.isbn=1424407540&rft.isbn_list=9781424407545&rft_id=info:doi/10.1109/ISIE.2007.4374599&rft_dat=%3Cieee_6IE%3E4374599%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424407559&rft.eisbn_list=9781424407552&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4374599&rfr_iscdi=true