Selective Sampling Strategies to Conserve Power in Context Aware Devices

We analyze the use of selective sampling strategies to aid in power conservation in sensor platforms for context-aware systems. In particular, we study an activity-aware system based on the eWatch sensor and notification platform, developed at CMU. We collected 94 hours of self-annotated activity da...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: French, B., Siewiorek, D.P., Smailagic, A., Deisher, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 80
container_issue
container_start_page 77
container_title
container_volume
creator French, B.
Siewiorek, D.P.
Smailagic, A.
Deisher, M.
description We analyze the use of selective sampling strategies to aid in power conservation in sensor platforms for context-aware systems. In particular, we study an activity-aware system based on the eWatch sensor and notification platform, developed at CMU. We collected 94 hours of self-annotated activity data from four subjects over several days each. We compare sampling strategies according to several metrics, each of which satisfies a different set of application needs. These metrics include: accuracy as the percentage of time between samples that sampled activity matches true activity, average latency of detecting a change in activity, the percentage of missed activities, and the percentage of redundant samples. We consider both the performance differences between strategies as well as differences between subjects. Accuracies of over 95% were achievable using only 3% of the samples.
doi_str_mv 10.1109/ISWC.2007.4373783
format Conference Proceeding
fullrecord <record><control><sourceid>ieee</sourceid><recordid>TN_cdi_ieee_primary_4373783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4373783</ieee_id><sourcerecordid>4373783</sourcerecordid><originalsourceid>FETCH-LOGICAL-i241t-8fed6d1708ea33c03185ff373f40f530b9645f6b057a3b76079dd7b17399b21e3</originalsourceid><addsrcrecordid>eNotkN1Kw0AUhFdRsNQ-gHizL5C4J2d_L0v8aaGgEMXLsmnOlpU2KcnS6tsbsXMzMB8MzDB2ByIHEO5hWX2WeSGEySUaNBYv2MwZC7KQEqQq3CWbFGh0ZpWEKzYBpUQmLegbNhuGLzEKnTYKJ2xR0Y42KR6JV35_2MV2y6vU-0TbSANPHS-7dqB-5G_diXoe278k0Xfi85PviT_SMW5ouGXXwe8Gmp19yj6en97LRbZ6fVmW81UWCwkps4Ea3YARljziRiBYFcK4IkgRFIraaamCroUyHmujhXFNY2ow6FxdAOGU3f_3RiJaH_q49_3P-vwD_gJJuU4-</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Selective Sampling Strategies to Conserve Power in Context Aware Devices</title><source>Alma/SFX Local Collection</source><creator>French, B. ; Siewiorek, D.P. ; Smailagic, A. ; Deisher, M.</creator><creatorcontrib>French, B. ; Siewiorek, D.P. ; Smailagic, A. ; Deisher, M.</creatorcontrib><description>We analyze the use of selective sampling strategies to aid in power conservation in sensor platforms for context-aware systems. In particular, we study an activity-aware system based on the eWatch sensor and notification platform, developed at CMU. We collected 94 hours of self-annotated activity data from four subjects over several days each. We compare sampling strategies according to several metrics, each of which satisfies a different set of application needs. These metrics include: accuracy as the percentage of time between samples that sampled activity matches true activity, average latency of detecting a change in activity, the percentage of missed activities, and the percentage of redundant samples. We consider both the performance differences between strategies as well as differences between subjects. Accuracies of over 95% were achievable using only 3% of the samples.</description><identifier>ISSN: 1550-4816</identifier><identifier>EISSN: 2376-8541</identifier><identifier>EISBN: 9781424414529</identifier><identifier>EISBN: 1424414520</identifier><identifier>DOI: 10.1109/ISWC.2007.4373783</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accelerometers ; Batteries ; Computational complexity ; Computer science ; Context awareness ; Energy consumption ; Sampling methods ; Sensor phenomena and characterization ; Sensor systems ; Wearable sensors</subject><ispartof>2007 11th IEEE International Symposium on Wearable Computers, 2007, p.77-80</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,776,780,785,786,27902</link.rule.ids></links><search><creatorcontrib>French, B.</creatorcontrib><creatorcontrib>Siewiorek, D.P.</creatorcontrib><creatorcontrib>Smailagic, A.</creatorcontrib><creatorcontrib>Deisher, M.</creatorcontrib><title>Selective Sampling Strategies to Conserve Power in Context Aware Devices</title><title>2007 11th IEEE International Symposium on Wearable Computers</title><addtitle>ISWC</addtitle><description>We analyze the use of selective sampling strategies to aid in power conservation in sensor platforms for context-aware systems. In particular, we study an activity-aware system based on the eWatch sensor and notification platform, developed at CMU. We collected 94 hours of self-annotated activity data from four subjects over several days each. We compare sampling strategies according to several metrics, each of which satisfies a different set of application needs. These metrics include: accuracy as the percentage of time between samples that sampled activity matches true activity, average latency of detecting a change in activity, the percentage of missed activities, and the percentage of redundant samples. We consider both the performance differences between strategies as well as differences between subjects. Accuracies of over 95% were achievable using only 3% of the samples.</description><subject>Accelerometers</subject><subject>Batteries</subject><subject>Computational complexity</subject><subject>Computer science</subject><subject>Context awareness</subject><subject>Energy consumption</subject><subject>Sampling methods</subject><subject>Sensor phenomena and characterization</subject><subject>Sensor systems</subject><subject>Wearable sensors</subject><issn>1550-4816</issn><issn>2376-8541</issn><isbn>9781424414529</isbn><isbn>1424414520</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkN1Kw0AUhFdRsNQ-gHizL5C4J2d_L0v8aaGgEMXLsmnOlpU2KcnS6tsbsXMzMB8MzDB2ByIHEO5hWX2WeSGEySUaNBYv2MwZC7KQEqQq3CWbFGh0ZpWEKzYBpUQmLegbNhuGLzEKnTYKJ2xR0Y42KR6JV35_2MV2y6vU-0TbSANPHS-7dqB-5G_diXoe278k0Xfi85PviT_SMW5ouGXXwe8Gmp19yj6en97LRbZ6fVmW81UWCwkps4Ea3YARljziRiBYFcK4IkgRFIraaamCroUyHmujhXFNY2ow6FxdAOGU3f_3RiJaH_q49_3P-vwD_gJJuU4-</recordid><startdate>200710</startdate><enddate>200710</enddate><creator>French, B.</creator><creator>Siewiorek, D.P.</creator><creator>Smailagic, A.</creator><creator>Deisher, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200710</creationdate><title>Selective Sampling Strategies to Conserve Power in Context Aware Devices</title><author>French, B. ; Siewiorek, D.P. ; Smailagic, A. ; Deisher, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i241t-8fed6d1708ea33c03185ff373f40f530b9645f6b057a3b76079dd7b17399b21e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Accelerometers</topic><topic>Batteries</topic><topic>Computational complexity</topic><topic>Computer science</topic><topic>Context awareness</topic><topic>Energy consumption</topic><topic>Sampling methods</topic><topic>Sensor phenomena and characterization</topic><topic>Sensor systems</topic><topic>Wearable sensors</topic><toplevel>online_resources</toplevel><creatorcontrib>French, B.</creatorcontrib><creatorcontrib>Siewiorek, D.P.</creatorcontrib><creatorcontrib>Smailagic, A.</creatorcontrib><creatorcontrib>Deisher, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>French, B.</au><au>Siewiorek, D.P.</au><au>Smailagic, A.</au><au>Deisher, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Selective Sampling Strategies to Conserve Power in Context Aware Devices</atitle><btitle>2007 11th IEEE International Symposium on Wearable Computers</btitle><stitle>ISWC</stitle><date>2007-10</date><risdate>2007</risdate><spage>77</spage><epage>80</epage><pages>77-80</pages><issn>1550-4816</issn><eissn>2376-8541</eissn><eisbn>9781424414529</eisbn><eisbn>1424414520</eisbn><abstract>We analyze the use of selective sampling strategies to aid in power conservation in sensor platforms for context-aware systems. In particular, we study an activity-aware system based on the eWatch sensor and notification platform, developed at CMU. We collected 94 hours of self-annotated activity data from four subjects over several days each. We compare sampling strategies according to several metrics, each of which satisfies a different set of application needs. These metrics include: accuracy as the percentage of time between samples that sampled activity matches true activity, average latency of detecting a change in activity, the percentage of missed activities, and the percentage of redundant samples. We consider both the performance differences between strategies as well as differences between subjects. Accuracies of over 95% were achievable using only 3% of the samples.</abstract><pub>IEEE</pub><doi>10.1109/ISWC.2007.4373783</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1550-4816
ispartof 2007 11th IEEE International Symposium on Wearable Computers, 2007, p.77-80
issn 1550-4816
2376-8541
language eng
recordid cdi_ieee_primary_4373783
source Alma/SFX Local Collection
subjects Accelerometers
Batteries
Computational complexity
Computer science
Context awareness
Energy consumption
Sampling methods
Sensor phenomena and characterization
Sensor systems
Wearable sensors
title Selective Sampling Strategies to Conserve Power in Context Aware Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A39%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Selective%20Sampling%20Strategies%20to%20Conserve%20Power%20in%20Context%20Aware%20Devices&rft.btitle=2007%2011th%20IEEE%20International%20Symposium%20on%20Wearable%20Computers&rft.au=French,%20B.&rft.date=2007-10&rft.spage=77&rft.epage=80&rft.pages=77-80&rft.issn=1550-4816&rft.eissn=2376-8541&rft_id=info:doi/10.1109/ISWC.2007.4373783&rft_dat=%3Cieee%3E4373783%3C/ieee%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424414529&rft.eisbn_list=1424414520&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4373783&rfr_iscdi=true