Reasoning and Learning About Past Temporal Knowledge in Connectionist Models

The integration of logic-based inference systems and connectionist learning architectures may lead to the construction of semantically sound cognitive models in artificial intelligence. The use of hybrid systems has shown promising results as regards the computation and learning of classical reasoni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Borges, R.V., Lamb, L.C., d'Avila Garcez, A.S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1493
container_issue
container_start_page 1488
container_title
container_volume
creator Borges, R.V.
Lamb, L.C.
d'Avila Garcez, A.S.
description The integration of logic-based inference systems and connectionist learning architectures may lead to the construction of semantically sound cognitive models in artificial intelligence. The use of hybrid systems has shown promising results as regards the computation and learning of classical reasoning within neural networks. However, there still remains a number of open research issues on the integration of non-classical logics and neural networks. We present a new model for integrating symbolic reasoning about past temporal information and neural learning systems. We propose algorithms that translate background knowledge into a neural network and analyse the effectiveness of learning algorithms when subject to symbolic temporal knowledge. This opens several interesting research paths with possible applications to agents' decision making, cognitive modelling and knowledge-based systems.
doi_str_mv 10.1109/IJCNN.2007.4371178
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4371178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4371178</ieee_id><sourcerecordid>4371178</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-6b1c6c64e38e15de91c5cc769f5f4749ec36211f8cdc67e290a2858aeff577bf3</originalsourceid><addsrcrecordid>eNo1kMtOwzAURM1Loi39Adj4BxJ8bcePZRXxKISCUJHYVY5zXQWlTpUEIf6eCsJqNDozsxhCLoGlAMxeLx_y1SrljOlUCg2gzRGZguRSgjDs_ZhMOChIpGT6hMytNiPT1p7-M2HFOZn2_QdjXFgrJqR4Rde3sY5b6mJFC3Tdr1mU7edAX1w_0DXu9m3nGvoY268Gqy3SOtK8jRH9UB-6h8xTW2HTX5Cz4Joe56POyNvtzTq_T4rnu2W-KJIadDYkqgSvvJIoDEJWoQWfea-VDVmQWlr0QnGAYHzllUZumeMmMw5DyLQug5iRq7_dGhE3-67eue57M74ifgAKsFKU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Reasoning and Learning About Past Temporal Knowledge in Connectionist Models</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Borges, R.V. ; Lamb, L.C. ; d'Avila Garcez, A.S.</creator><creatorcontrib>Borges, R.V. ; Lamb, L.C. ; d'Avila Garcez, A.S.</creatorcontrib><description>The integration of logic-based inference systems and connectionist learning architectures may lead to the construction of semantically sound cognitive models in artificial intelligence. The use of hybrid systems has shown promising results as regards the computation and learning of classical reasoning within neural networks. However, there still remains a number of open research issues on the integration of non-classical logics and neural networks. We present a new model for integrating symbolic reasoning about past temporal information and neural learning systems. We propose algorithms that translate background knowledge into a neural network and analyse the effectiveness of learning algorithms when subject to symbolic temporal knowledge. This opens several interesting research paths with possible applications to agents' decision making, cognitive modelling and knowledge-based systems.</description><identifier>ISSN: 2161-4393</identifier><identifier>ISBN: 9781424413799</identifier><identifier>ISBN: 1424413796</identifier><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 142441380X</identifier><identifier>EISBN: 9781424413805</identifier><identifier>DOI: 10.1109/IJCNN.2007.4371178</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Artificial intelligence ; Artificial neural networks ; Computer architecture ; Computer networks ; Decision making ; Knowledge based systems ; Learning systems ; Logic ; Neural networks</subject><ispartof>2007 International Joint Conference on Neural Networks, 2007, p.1488-1493</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4371178$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4371178$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Borges, R.V.</creatorcontrib><creatorcontrib>Lamb, L.C.</creatorcontrib><creatorcontrib>d'Avila Garcez, A.S.</creatorcontrib><title>Reasoning and Learning About Past Temporal Knowledge in Connectionist Models</title><title>2007 International Joint Conference on Neural Networks</title><addtitle>IJCNN</addtitle><description>The integration of logic-based inference systems and connectionist learning architectures may lead to the construction of semantically sound cognitive models in artificial intelligence. The use of hybrid systems has shown promising results as regards the computation and learning of classical reasoning within neural networks. However, there still remains a number of open research issues on the integration of non-classical logics and neural networks. We present a new model for integrating symbolic reasoning about past temporal information and neural learning systems. We propose algorithms that translate background knowledge into a neural network and analyse the effectiveness of learning algorithms when subject to symbolic temporal knowledge. This opens several interesting research paths with possible applications to agents' decision making, cognitive modelling and knowledge-based systems.</description><subject>Algorithm design and analysis</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Computer architecture</subject><subject>Computer networks</subject><subject>Decision making</subject><subject>Knowledge based systems</subject><subject>Learning systems</subject><subject>Logic</subject><subject>Neural networks</subject><issn>2161-4393</issn><issn>2161-4407</issn><isbn>9781424413799</isbn><isbn>1424413796</isbn><isbn>142441380X</isbn><isbn>9781424413805</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMtOwzAURM1Loi39Adj4BxJ8bcePZRXxKISCUJHYVY5zXQWlTpUEIf6eCsJqNDozsxhCLoGlAMxeLx_y1SrljOlUCg2gzRGZguRSgjDs_ZhMOChIpGT6hMytNiPT1p7-M2HFOZn2_QdjXFgrJqR4Rde3sY5b6mJFC3Tdr1mU7edAX1w_0DXu9m3nGvoY268Gqy3SOtK8jRH9UB-6h8xTW2HTX5Cz4Joe56POyNvtzTq_T4rnu2W-KJIadDYkqgSvvJIoDEJWoQWfea-VDVmQWlr0QnGAYHzllUZumeMmMw5DyLQug5iRq7_dGhE3-67eue57M74ifgAKsFKU</recordid><startdate>200708</startdate><enddate>200708</enddate><creator>Borges, R.V.</creator><creator>Lamb, L.C.</creator><creator>d'Avila Garcez, A.S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200708</creationdate><title>Reasoning and Learning About Past Temporal Knowledge in Connectionist Models</title><author>Borges, R.V. ; Lamb, L.C. ; d'Avila Garcez, A.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-6b1c6c64e38e15de91c5cc769f5f4749ec36211f8cdc67e290a2858aeff577bf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithm design and analysis</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Computer architecture</topic><topic>Computer networks</topic><topic>Decision making</topic><topic>Knowledge based systems</topic><topic>Learning systems</topic><topic>Logic</topic><topic>Neural networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Borges, R.V.</creatorcontrib><creatorcontrib>Lamb, L.C.</creatorcontrib><creatorcontrib>d'Avila Garcez, A.S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Borges, R.V.</au><au>Lamb, L.C.</au><au>d'Avila Garcez, A.S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Reasoning and Learning About Past Temporal Knowledge in Connectionist Models</atitle><btitle>2007 International Joint Conference on Neural Networks</btitle><stitle>IJCNN</stitle><date>2007-08</date><risdate>2007</risdate><spage>1488</spage><epage>1493</epage><pages>1488-1493</pages><issn>2161-4393</issn><eissn>2161-4407</eissn><isbn>9781424413799</isbn><isbn>1424413796</isbn><eisbn>142441380X</eisbn><eisbn>9781424413805</eisbn><abstract>The integration of logic-based inference systems and connectionist learning architectures may lead to the construction of semantically sound cognitive models in artificial intelligence. The use of hybrid systems has shown promising results as regards the computation and learning of classical reasoning within neural networks. However, there still remains a number of open research issues on the integration of non-classical logics and neural networks. We present a new model for integrating symbolic reasoning about past temporal information and neural learning systems. We propose algorithms that translate background knowledge into a neural network and analyse the effectiveness of learning algorithms when subject to symbolic temporal knowledge. This opens several interesting research paths with possible applications to agents' decision making, cognitive modelling and knowledge-based systems.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2007.4371178</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2161-4393
ispartof 2007 International Joint Conference on Neural Networks, 2007, p.1488-1493
issn 2161-4393
2161-4407
language eng
recordid cdi_ieee_primary_4371178
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Artificial intelligence
Artificial neural networks
Computer architecture
Computer networks
Decision making
Knowledge based systems
Learning systems
Logic
Neural networks
title Reasoning and Learning About Past Temporal Knowledge in Connectionist Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T21%3A02%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Reasoning%20and%20Learning%20About%20Past%20Temporal%20Knowledge%20in%20Connectionist%20Models&rft.btitle=2007%20International%20Joint%20Conference%20on%20Neural%20Networks&rft.au=Borges,%20R.V.&rft.date=2007-08&rft.spage=1488&rft.epage=1493&rft.pages=1488-1493&rft.issn=2161-4393&rft.eissn=2161-4407&rft.isbn=9781424413799&rft.isbn_list=1424413796&rft_id=info:doi/10.1109/IJCNN.2007.4371178&rft_dat=%3Cieee_6IE%3E4371178%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=142441380X&rft.eisbn_list=9781424413805&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4371178&rfr_iscdi=true