Machine Learning Techniques in Detecting of Pulmonary Embolisms

Computer Aided Detection (CAD) systems have recently been used by physicians to help automatically detect early forms of breast cancer in X-ray images, lung nodules in lung CT images, and polyps in colon CT images. We discuss an automatic detection mechanism using a genetic algorithms (GA) approach...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Myers, M.H., Beliaev, I., King-Ip Lin
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 390
container_issue
container_start_page 385
container_title
container_volume
creator Myers, M.H.
Beliaev, I.
King-Ip Lin
description Computer Aided Detection (CAD) systems have recently been used by physicians to help automatically detect early forms of breast cancer in X-ray images, lung nodules in lung CT images, and polyps in colon CT images. We discuss an automatic detection mechanism using a genetic algorithms (GA) approach to identify and classify Pulmonary Embolisms (PE) captured through Computed Tomography Angiography (CTA). Our method enhances the performance of the classification of diseases as compared to other methodologies discussed in this paper.
doi_str_mv 10.1109/IJCNN.2007.4370987
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4370987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4370987</ieee_id><sourcerecordid>4370987</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-4eb735f14687e4529d9abf593ea118752233c26b69f9b1362436863a6b6658a93</originalsourceid><addsrcrecordid>eNo1kMtOwzAURM1Loi39AdjkBxJsX8f2XSEUChSFwqJI7Con3FCjxIEkXfD3FBFWI50jjUbD2LngiRAcL5cP2WqVSM5NosBwtOaATYWSSgmw_PWQTaTQIlaKmyM2R2NHZxCP_x0gnLJp339wLgERJuzq0ZVbHyjKyXXBh_doTeU2-K8d9ZEP0Q0NVA6_vK2i513dtMF139GiKdra901_xk4qV_c0H3PGXm4X6-w-zp_ultl1Hnth0iFWVBhIK6G0NaRSiW_oiipFICeENamUAKXUhcYKCwFaKtBWg9sTnVqHMGMXf72eiDafnW_2MzbjEfADDIlMNw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Machine Learning Techniques in Detecting of Pulmonary Embolisms</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Myers, M.H. ; Beliaev, I. ; King-Ip Lin</creator><creatorcontrib>Myers, M.H. ; Beliaev, I. ; King-Ip Lin</creatorcontrib><description>Computer Aided Detection (CAD) systems have recently been used by physicians to help automatically detect early forms of breast cancer in X-ray images, lung nodules in lung CT images, and polyps in colon CT images. We discuss an automatic detection mechanism using a genetic algorithms (GA) approach to identify and classify Pulmonary Embolisms (PE) captured through Computed Tomography Angiography (CTA). Our method enhances the performance of the classification of diseases as compared to other methodologies discussed in this paper.</description><identifier>ISSN: 2161-4393</identifier><identifier>ISBN: 9781424413799</identifier><identifier>ISBN: 1424413796</identifier><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 142441380X</identifier><identifier>EISBN: 9781424413805</identifier><identifier>DOI: 10.1109/IJCNN.2007.4370987</identifier><language>eng</language><publisher>IEEE</publisher><subject>Breast cancer ; Cancer detection ; Colonic polyps ; Computed tomography ; Lungs ; Machine learning ; Physics computing ; X-ray detection ; X-ray detectors ; X-ray imaging</subject><ispartof>2007 International Joint Conference on Neural Networks, 2007, p.385-390</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4370987$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4370987$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Myers, M.H.</creatorcontrib><creatorcontrib>Beliaev, I.</creatorcontrib><creatorcontrib>King-Ip Lin</creatorcontrib><title>Machine Learning Techniques in Detecting of Pulmonary Embolisms</title><title>2007 International Joint Conference on Neural Networks</title><addtitle>IJCNN</addtitle><description>Computer Aided Detection (CAD) systems have recently been used by physicians to help automatically detect early forms of breast cancer in X-ray images, lung nodules in lung CT images, and polyps in colon CT images. We discuss an automatic detection mechanism using a genetic algorithms (GA) approach to identify and classify Pulmonary Embolisms (PE) captured through Computed Tomography Angiography (CTA). Our method enhances the performance of the classification of diseases as compared to other methodologies discussed in this paper.</description><subject>Breast cancer</subject><subject>Cancer detection</subject><subject>Colonic polyps</subject><subject>Computed tomography</subject><subject>Lungs</subject><subject>Machine learning</subject><subject>Physics computing</subject><subject>X-ray detection</subject><subject>X-ray detectors</subject><subject>X-ray imaging</subject><issn>2161-4393</issn><issn>2161-4407</issn><isbn>9781424413799</isbn><isbn>1424413796</isbn><isbn>142441380X</isbn><isbn>9781424413805</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMtOwzAURM1Loi39AdjkBxJsX8f2XSEUChSFwqJI7Con3FCjxIEkXfD3FBFWI50jjUbD2LngiRAcL5cP2WqVSM5NosBwtOaATYWSSgmw_PWQTaTQIlaKmyM2R2NHZxCP_x0gnLJp339wLgERJuzq0ZVbHyjKyXXBh_doTeU2-K8d9ZEP0Q0NVA6_vK2i513dtMF139GiKdra901_xk4qV_c0H3PGXm4X6-w-zp_ultl1Hnth0iFWVBhIK6G0NaRSiW_oiipFICeENamUAKXUhcYKCwFaKtBWg9sTnVqHMGMXf72eiDafnW_2MzbjEfADDIlMNw</recordid><startdate>200708</startdate><enddate>200708</enddate><creator>Myers, M.H.</creator><creator>Beliaev, I.</creator><creator>King-Ip Lin</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200708</creationdate><title>Machine Learning Techniques in Detecting of Pulmonary Embolisms</title><author>Myers, M.H. ; Beliaev, I. ; King-Ip Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-4eb735f14687e4529d9abf593ea118752233c26b69f9b1362436863a6b6658a93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Breast cancer</topic><topic>Cancer detection</topic><topic>Colonic polyps</topic><topic>Computed tomography</topic><topic>Lungs</topic><topic>Machine learning</topic><topic>Physics computing</topic><topic>X-ray detection</topic><topic>X-ray detectors</topic><topic>X-ray imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>Myers, M.H.</creatorcontrib><creatorcontrib>Beliaev, I.</creatorcontrib><creatorcontrib>King-Ip Lin</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Myers, M.H.</au><au>Beliaev, I.</au><au>King-Ip Lin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Machine Learning Techniques in Detecting of Pulmonary Embolisms</atitle><btitle>2007 International Joint Conference on Neural Networks</btitle><stitle>IJCNN</stitle><date>2007-08</date><risdate>2007</risdate><spage>385</spage><epage>390</epage><pages>385-390</pages><issn>2161-4393</issn><eissn>2161-4407</eissn><isbn>9781424413799</isbn><isbn>1424413796</isbn><eisbn>142441380X</eisbn><eisbn>9781424413805</eisbn><abstract>Computer Aided Detection (CAD) systems have recently been used by physicians to help automatically detect early forms of breast cancer in X-ray images, lung nodules in lung CT images, and polyps in colon CT images. We discuss an automatic detection mechanism using a genetic algorithms (GA) approach to identify and classify Pulmonary Embolisms (PE) captured through Computed Tomography Angiography (CTA). Our method enhances the performance of the classification of diseases as compared to other methodologies discussed in this paper.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2007.4370987</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2161-4393
ispartof 2007 International Joint Conference on Neural Networks, 2007, p.385-390
issn 2161-4393
2161-4407
language eng
recordid cdi_ieee_primary_4370987
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Breast cancer
Cancer detection
Colonic polyps
Computed tomography
Lungs
Machine learning
Physics computing
X-ray detection
X-ray detectors
X-ray imaging
title Machine Learning Techniques in Detecting of Pulmonary Embolisms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T23%3A48%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Machine%20Learning%20Techniques%20in%20Detecting%20of%20Pulmonary%20Embolisms&rft.btitle=2007%20International%20Joint%20Conference%20on%20Neural%20Networks&rft.au=Myers,%20M.H.&rft.date=2007-08&rft.spage=385&rft.epage=390&rft.pages=385-390&rft.issn=2161-4393&rft.eissn=2161-4407&rft.isbn=9781424413799&rft.isbn_list=1424413796&rft_id=info:doi/10.1109/IJCNN.2007.4370987&rft_dat=%3Cieee_6IE%3E4370987%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=142441380X&rft.eisbn_list=9781424413805&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4370987&rfr_iscdi=true