Machine Learning Techniques in Detecting of Pulmonary Embolisms
Computer Aided Detection (CAD) systems have recently been used by physicians to help automatically detect early forms of breast cancer in X-ray images, lung nodules in lung CT images, and polyps in colon CT images. We discuss an automatic detection mechanism using a genetic algorithms (GA) approach...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 390 |
---|---|
container_issue | |
container_start_page | 385 |
container_title | |
container_volume | |
creator | Myers, M.H. Beliaev, I. King-Ip Lin |
description | Computer Aided Detection (CAD) systems have recently been used by physicians to help automatically detect early forms of breast cancer in X-ray images, lung nodules in lung CT images, and polyps in colon CT images. We discuss an automatic detection mechanism using a genetic algorithms (GA) approach to identify and classify Pulmonary Embolisms (PE) captured through Computed Tomography Angiography (CTA). Our method enhances the performance of the classification of diseases as compared to other methodologies discussed in this paper. |
doi_str_mv | 10.1109/IJCNN.2007.4370987 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4370987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4370987</ieee_id><sourcerecordid>4370987</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-4eb735f14687e4529d9abf593ea118752233c26b69f9b1362436863a6b6658a93</originalsourceid><addsrcrecordid>eNo1kMtOwzAURM1Loi39AdjkBxJsX8f2XSEUChSFwqJI7Con3FCjxIEkXfD3FBFWI50jjUbD2LngiRAcL5cP2WqVSM5NosBwtOaATYWSSgmw_PWQTaTQIlaKmyM2R2NHZxCP_x0gnLJp339wLgERJuzq0ZVbHyjKyXXBh_doTeU2-K8d9ZEP0Q0NVA6_vK2i513dtMF139GiKdra901_xk4qV_c0H3PGXm4X6-w-zp_ultl1Hnth0iFWVBhIK6G0NaRSiW_oiipFICeENamUAKXUhcYKCwFaKtBWg9sTnVqHMGMXf72eiDafnW_2MzbjEfADDIlMNw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Machine Learning Techniques in Detecting of Pulmonary Embolisms</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Myers, M.H. ; Beliaev, I. ; King-Ip Lin</creator><creatorcontrib>Myers, M.H. ; Beliaev, I. ; King-Ip Lin</creatorcontrib><description>Computer Aided Detection (CAD) systems have recently been used by physicians to help automatically detect early forms of breast cancer in X-ray images, lung nodules in lung CT images, and polyps in colon CT images. We discuss an automatic detection mechanism using a genetic algorithms (GA) approach to identify and classify Pulmonary Embolisms (PE) captured through Computed Tomography Angiography (CTA). Our method enhances the performance of the classification of diseases as compared to other methodologies discussed in this paper.</description><identifier>ISSN: 2161-4393</identifier><identifier>ISBN: 9781424413799</identifier><identifier>ISBN: 1424413796</identifier><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 142441380X</identifier><identifier>EISBN: 9781424413805</identifier><identifier>DOI: 10.1109/IJCNN.2007.4370987</identifier><language>eng</language><publisher>IEEE</publisher><subject>Breast cancer ; Cancer detection ; Colonic polyps ; Computed tomography ; Lungs ; Machine learning ; Physics computing ; X-ray detection ; X-ray detectors ; X-ray imaging</subject><ispartof>2007 International Joint Conference on Neural Networks, 2007, p.385-390</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4370987$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4370987$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Myers, M.H.</creatorcontrib><creatorcontrib>Beliaev, I.</creatorcontrib><creatorcontrib>King-Ip Lin</creatorcontrib><title>Machine Learning Techniques in Detecting of Pulmonary Embolisms</title><title>2007 International Joint Conference on Neural Networks</title><addtitle>IJCNN</addtitle><description>Computer Aided Detection (CAD) systems have recently been used by physicians to help automatically detect early forms of breast cancer in X-ray images, lung nodules in lung CT images, and polyps in colon CT images. We discuss an automatic detection mechanism using a genetic algorithms (GA) approach to identify and classify Pulmonary Embolisms (PE) captured through Computed Tomography Angiography (CTA). Our method enhances the performance of the classification of diseases as compared to other methodologies discussed in this paper.</description><subject>Breast cancer</subject><subject>Cancer detection</subject><subject>Colonic polyps</subject><subject>Computed tomography</subject><subject>Lungs</subject><subject>Machine learning</subject><subject>Physics computing</subject><subject>X-ray detection</subject><subject>X-ray detectors</subject><subject>X-ray imaging</subject><issn>2161-4393</issn><issn>2161-4407</issn><isbn>9781424413799</isbn><isbn>1424413796</isbn><isbn>142441380X</isbn><isbn>9781424413805</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMtOwzAURM1Loi39AdjkBxJsX8f2XSEUChSFwqJI7Con3FCjxIEkXfD3FBFWI50jjUbD2LngiRAcL5cP2WqVSM5NosBwtOaATYWSSgmw_PWQTaTQIlaKmyM2R2NHZxCP_x0gnLJp339wLgERJuzq0ZVbHyjKyXXBh_doTeU2-K8d9ZEP0Q0NVA6_vK2i513dtMF139GiKdra901_xk4qV_c0H3PGXm4X6-w-zp_ultl1Hnth0iFWVBhIK6G0NaRSiW_oiipFICeENamUAKXUhcYKCwFaKtBWg9sTnVqHMGMXf72eiDafnW_2MzbjEfADDIlMNw</recordid><startdate>200708</startdate><enddate>200708</enddate><creator>Myers, M.H.</creator><creator>Beliaev, I.</creator><creator>King-Ip Lin</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200708</creationdate><title>Machine Learning Techniques in Detecting of Pulmonary Embolisms</title><author>Myers, M.H. ; Beliaev, I. ; King-Ip Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-4eb735f14687e4529d9abf593ea118752233c26b69f9b1362436863a6b6658a93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Breast cancer</topic><topic>Cancer detection</topic><topic>Colonic polyps</topic><topic>Computed tomography</topic><topic>Lungs</topic><topic>Machine learning</topic><topic>Physics computing</topic><topic>X-ray detection</topic><topic>X-ray detectors</topic><topic>X-ray imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>Myers, M.H.</creatorcontrib><creatorcontrib>Beliaev, I.</creatorcontrib><creatorcontrib>King-Ip Lin</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Myers, M.H.</au><au>Beliaev, I.</au><au>King-Ip Lin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Machine Learning Techniques in Detecting of Pulmonary Embolisms</atitle><btitle>2007 International Joint Conference on Neural Networks</btitle><stitle>IJCNN</stitle><date>2007-08</date><risdate>2007</risdate><spage>385</spage><epage>390</epage><pages>385-390</pages><issn>2161-4393</issn><eissn>2161-4407</eissn><isbn>9781424413799</isbn><isbn>1424413796</isbn><eisbn>142441380X</eisbn><eisbn>9781424413805</eisbn><abstract>Computer Aided Detection (CAD) systems have recently been used by physicians to help automatically detect early forms of breast cancer in X-ray images, lung nodules in lung CT images, and polyps in colon CT images. We discuss an automatic detection mechanism using a genetic algorithms (GA) approach to identify and classify Pulmonary Embolisms (PE) captured through Computed Tomography Angiography (CTA). Our method enhances the performance of the classification of diseases as compared to other methodologies discussed in this paper.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2007.4370987</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2161-4393 |
ispartof | 2007 International Joint Conference on Neural Networks, 2007, p.385-390 |
issn | 2161-4393 2161-4407 |
language | eng |
recordid | cdi_ieee_primary_4370987 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Breast cancer Cancer detection Colonic polyps Computed tomography Lungs Machine learning Physics computing X-ray detection X-ray detectors X-ray imaging |
title | Machine Learning Techniques in Detecting of Pulmonary Embolisms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T23%3A48%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Machine%20Learning%20Techniques%20in%20Detecting%20of%20Pulmonary%20Embolisms&rft.btitle=2007%20International%20Joint%20Conference%20on%20Neural%20Networks&rft.au=Myers,%20M.H.&rft.date=2007-08&rft.spage=385&rft.epage=390&rft.pages=385-390&rft.issn=2161-4393&rft.eissn=2161-4407&rft.isbn=9781424413799&rft.isbn_list=1424413796&rft_id=info:doi/10.1109/IJCNN.2007.4370987&rft_dat=%3Cieee_6IE%3E4370987%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=142441380X&rft.eisbn_list=9781424413805&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4370987&rfr_iscdi=true |