Dynamic Discretization: A Combination Approach

Supervised discretization refers to the problem of transforming continuous attributes of a decision table into discredited ones. It is important for some artificial intelligence theories where nominal data are required or preferred. Instead of depending on the experience of human experts, supervised...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fan Min, Qi-He Liu, Hong-Bin Cai, Zhong-Jian Bai
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3677
container_issue
container_start_page 3672
container_title
container_volume 7
creator Fan Min
Qi-He Liu
Hong-Bin Cai
Zhong-Jian Bai
description Supervised discretization refers to the problem of transforming continuous attributes of a decision table into discredited ones. It is important for some artificial intelligence theories where nominal data are required or preferred. Instead of depending on the experience of human experts, supervised discretization algorithms learn from the data. However, the results of such algorithms may be sensitive to the change of the data. In this paper, we propose to compute more stable and informative discretization schemes through subtable sampling and scheme combination. Discretization schemes computed in this way are called dynamic discretization schemes. Experimental results on some well-known datasets show that they are helpful for obtaining decision rules with better accuracy and F-measure.
doi_str_mv 10.1109/ICMLC.2007.4370785
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4370785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4370785</ieee_id><sourcerecordid>4370785</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-1bdab89542c8c55cce2798c92fd0d4b0e36f1882bf55f85419974614b10ae13c3</originalsourceid><addsrcrecordid>eNo1j8tKxDAUQCMqODP2B3TTH2i9N48mcVcyPgY6uFFwNyRpghH7oO1m_HpBx9XhbA4cQm4QSkTQdzuzb0xJAWTJmQSpxBnJtFTIKeegJYNzsv4XihdkRbGCAhl7vyLZPH8CAMqKA2UrUm6Pve2Sz7dp9lNY0rdd0tDf53Vuhs6l_lfzehynwfqPa3IZ7dccshM35O3x4dU8F83L087UTZFQiqVA11qntODUKy-E94FKrbymsYWWOwisiqgUdVGIqARHrSWvkDsEG5B5tiG3f90UQjiMU-rsdDycdtkP7zBFaA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Dynamic Discretization: A Combination Approach</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Fan Min ; Qi-He Liu ; Hong-Bin Cai ; Zhong-Jian Bai</creator><creatorcontrib>Fan Min ; Qi-He Liu ; Hong-Bin Cai ; Zhong-Jian Bai</creatorcontrib><description>Supervised discretization refers to the problem of transforming continuous attributes of a decision table into discredited ones. It is important for some artificial intelligence theories where nominal data are required or preferred. Instead of depending on the experience of human experts, supervised discretization algorithms learn from the data. However, the results of such algorithms may be sensitive to the change of the data. In this paper, we propose to compute more stable and informative discretization schemes through subtable sampling and scheme combination. Discretization schemes computed in this way are called dynamic discretization schemes. Experimental results on some well-known datasets show that they are helpful for obtaining decision rules with better accuracy and F-measure.</description><identifier>ISSN: 2160-133X</identifier><identifier>ISBN: 1424409721</identifier><identifier>ISBN: 9781424409723</identifier><identifier>EISBN: 9781424409730</identifier><identifier>EISBN: 142440973X</identifier><identifier>DOI: 10.1109/ICMLC.2007.4370785</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial intelligence ; Computer aided instruction ; Computer science ; Cybernetics ; Data analysis ; Decision trees ; Discretization scheme ; Humans ; Machine learning ; Rough sets ; Sampling methods ; Subtable</subject><ispartof>2007 International Conference on Machine Learning and Cybernetics, 2007, Vol.7, p.3672-3677</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4370785$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4370785$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fan Min</creatorcontrib><creatorcontrib>Qi-He Liu</creatorcontrib><creatorcontrib>Hong-Bin Cai</creatorcontrib><creatorcontrib>Zhong-Jian Bai</creatorcontrib><title>Dynamic Discretization: A Combination Approach</title><title>2007 International Conference on Machine Learning and Cybernetics</title><addtitle>ICMLC</addtitle><description>Supervised discretization refers to the problem of transforming continuous attributes of a decision table into discredited ones. It is important for some artificial intelligence theories where nominal data are required or preferred. Instead of depending on the experience of human experts, supervised discretization algorithms learn from the data. However, the results of such algorithms may be sensitive to the change of the data. In this paper, we propose to compute more stable and informative discretization schemes through subtable sampling and scheme combination. Discretization schemes computed in this way are called dynamic discretization schemes. Experimental results on some well-known datasets show that they are helpful for obtaining decision rules with better accuracy and F-measure.</description><subject>Artificial intelligence</subject><subject>Computer aided instruction</subject><subject>Computer science</subject><subject>Cybernetics</subject><subject>Data analysis</subject><subject>Decision trees</subject><subject>Discretization scheme</subject><subject>Humans</subject><subject>Machine learning</subject><subject>Rough sets</subject><subject>Sampling methods</subject><subject>Subtable</subject><issn>2160-133X</issn><isbn>1424409721</isbn><isbn>9781424409723</isbn><isbn>9781424409730</isbn><isbn>142440973X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j8tKxDAUQCMqODP2B3TTH2i9N48mcVcyPgY6uFFwNyRpghH7oO1m_HpBx9XhbA4cQm4QSkTQdzuzb0xJAWTJmQSpxBnJtFTIKeegJYNzsv4XihdkRbGCAhl7vyLZPH8CAMqKA2UrUm6Pve2Sz7dp9lNY0rdd0tDf53Vuhs6l_lfzehynwfqPa3IZ7dccshM35O3x4dU8F83L087UTZFQiqVA11qntODUKy-E94FKrbymsYWWOwisiqgUdVGIqARHrSWvkDsEG5B5tiG3f90UQjiMU-rsdDycdtkP7zBFaA</recordid><startdate>200708</startdate><enddate>200708</enddate><creator>Fan Min</creator><creator>Qi-He Liu</creator><creator>Hong-Bin Cai</creator><creator>Zhong-Jian Bai</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200708</creationdate><title>Dynamic Discretization: A Combination Approach</title><author>Fan Min ; Qi-He Liu ; Hong-Bin Cai ; Zhong-Jian Bai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-1bdab89542c8c55cce2798c92fd0d4b0e36f1882bf55f85419974614b10ae13c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Artificial intelligence</topic><topic>Computer aided instruction</topic><topic>Computer science</topic><topic>Cybernetics</topic><topic>Data analysis</topic><topic>Decision trees</topic><topic>Discretization scheme</topic><topic>Humans</topic><topic>Machine learning</topic><topic>Rough sets</topic><topic>Sampling methods</topic><topic>Subtable</topic><toplevel>online_resources</toplevel><creatorcontrib>Fan Min</creatorcontrib><creatorcontrib>Qi-He Liu</creatorcontrib><creatorcontrib>Hong-Bin Cai</creatorcontrib><creatorcontrib>Zhong-Jian Bai</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fan Min</au><au>Qi-He Liu</au><au>Hong-Bin Cai</au><au>Zhong-Jian Bai</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Dynamic Discretization: A Combination Approach</atitle><btitle>2007 International Conference on Machine Learning and Cybernetics</btitle><stitle>ICMLC</stitle><date>2007-08</date><risdate>2007</risdate><volume>7</volume><spage>3672</spage><epage>3677</epage><pages>3672-3677</pages><issn>2160-133X</issn><isbn>1424409721</isbn><isbn>9781424409723</isbn><eisbn>9781424409730</eisbn><eisbn>142440973X</eisbn><abstract>Supervised discretization refers to the problem of transforming continuous attributes of a decision table into discredited ones. It is important for some artificial intelligence theories where nominal data are required or preferred. Instead of depending on the experience of human experts, supervised discretization algorithms learn from the data. However, the results of such algorithms may be sensitive to the change of the data. In this paper, we propose to compute more stable and informative discretization schemes through subtable sampling and scheme combination. Discretization schemes computed in this way are called dynamic discretization schemes. Experimental results on some well-known datasets show that they are helpful for obtaining decision rules with better accuracy and F-measure.</abstract><pub>IEEE</pub><doi>10.1109/ICMLC.2007.4370785</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2160-133X
ispartof 2007 International Conference on Machine Learning and Cybernetics, 2007, Vol.7, p.3672-3677
issn 2160-133X
language eng
recordid cdi_ieee_primary_4370785
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial intelligence
Computer aided instruction
Computer science
Cybernetics
Data analysis
Decision trees
Discretization scheme
Humans
Machine learning
Rough sets
Sampling methods
Subtable
title Dynamic Discretization: A Combination Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A05%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Dynamic%20Discretization:%20A%20Combination%20Approach&rft.btitle=2007%20International%20Conference%20on%20Machine%20Learning%20and%20Cybernetics&rft.au=Fan%20Min&rft.date=2007-08&rft.volume=7&rft.spage=3672&rft.epage=3677&rft.pages=3672-3677&rft.issn=2160-133X&rft.isbn=1424409721&rft.isbn_list=9781424409723&rft_id=info:doi/10.1109/ICMLC.2007.4370785&rft_dat=%3Cieee_6IE%3E4370785%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424409730&rft.eisbn_list=142440973X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4370785&rfr_iscdi=true