Dynamic Discretization: A Combination Approach
Supervised discretization refers to the problem of transforming continuous attributes of a decision table into discredited ones. It is important for some artificial intelligence theories where nominal data are required or preferred. Instead of depending on the experience of human experts, supervised...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3677 |
---|---|
container_issue | |
container_start_page | 3672 |
container_title | |
container_volume | 7 |
creator | Fan Min Qi-He Liu Hong-Bin Cai Zhong-Jian Bai |
description | Supervised discretization refers to the problem of transforming continuous attributes of a decision table into discredited ones. It is important for some artificial intelligence theories where nominal data are required or preferred. Instead of depending on the experience of human experts, supervised discretization algorithms learn from the data. However, the results of such algorithms may be sensitive to the change of the data. In this paper, we propose to compute more stable and informative discretization schemes through subtable sampling and scheme combination. Discretization schemes computed in this way are called dynamic discretization schemes. Experimental results on some well-known datasets show that they are helpful for obtaining decision rules with better accuracy and F-measure. |
doi_str_mv | 10.1109/ICMLC.2007.4370785 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4370785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4370785</ieee_id><sourcerecordid>4370785</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-1bdab89542c8c55cce2798c92fd0d4b0e36f1882bf55f85419974614b10ae13c3</originalsourceid><addsrcrecordid>eNo1j8tKxDAUQCMqODP2B3TTH2i9N48mcVcyPgY6uFFwNyRpghH7oO1m_HpBx9XhbA4cQm4QSkTQdzuzb0xJAWTJmQSpxBnJtFTIKeegJYNzsv4XihdkRbGCAhl7vyLZPH8CAMqKA2UrUm6Pve2Sz7dp9lNY0rdd0tDf53Vuhs6l_lfzehynwfqPa3IZ7dccshM35O3x4dU8F83L087UTZFQiqVA11qntODUKy-E94FKrbymsYWWOwisiqgUdVGIqARHrSWvkDsEG5B5tiG3f90UQjiMU-rsdDycdtkP7zBFaA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Dynamic Discretization: A Combination Approach</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Fan Min ; Qi-He Liu ; Hong-Bin Cai ; Zhong-Jian Bai</creator><creatorcontrib>Fan Min ; Qi-He Liu ; Hong-Bin Cai ; Zhong-Jian Bai</creatorcontrib><description>Supervised discretization refers to the problem of transforming continuous attributes of a decision table into discredited ones. It is important for some artificial intelligence theories where nominal data are required or preferred. Instead of depending on the experience of human experts, supervised discretization algorithms learn from the data. However, the results of such algorithms may be sensitive to the change of the data. In this paper, we propose to compute more stable and informative discretization schemes through subtable sampling and scheme combination. Discretization schemes computed in this way are called dynamic discretization schemes. Experimental results on some well-known datasets show that they are helpful for obtaining decision rules with better accuracy and F-measure.</description><identifier>ISSN: 2160-133X</identifier><identifier>ISBN: 1424409721</identifier><identifier>ISBN: 9781424409723</identifier><identifier>EISBN: 9781424409730</identifier><identifier>EISBN: 142440973X</identifier><identifier>DOI: 10.1109/ICMLC.2007.4370785</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial intelligence ; Computer aided instruction ; Computer science ; Cybernetics ; Data analysis ; Decision trees ; Discretization scheme ; Humans ; Machine learning ; Rough sets ; Sampling methods ; Subtable</subject><ispartof>2007 International Conference on Machine Learning and Cybernetics, 2007, Vol.7, p.3672-3677</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4370785$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4370785$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fan Min</creatorcontrib><creatorcontrib>Qi-He Liu</creatorcontrib><creatorcontrib>Hong-Bin Cai</creatorcontrib><creatorcontrib>Zhong-Jian Bai</creatorcontrib><title>Dynamic Discretization: A Combination Approach</title><title>2007 International Conference on Machine Learning and Cybernetics</title><addtitle>ICMLC</addtitle><description>Supervised discretization refers to the problem of transforming continuous attributes of a decision table into discredited ones. It is important for some artificial intelligence theories where nominal data are required or preferred. Instead of depending on the experience of human experts, supervised discretization algorithms learn from the data. However, the results of such algorithms may be sensitive to the change of the data. In this paper, we propose to compute more stable and informative discretization schemes through subtable sampling and scheme combination. Discretization schemes computed in this way are called dynamic discretization schemes. Experimental results on some well-known datasets show that they are helpful for obtaining decision rules with better accuracy and F-measure.</description><subject>Artificial intelligence</subject><subject>Computer aided instruction</subject><subject>Computer science</subject><subject>Cybernetics</subject><subject>Data analysis</subject><subject>Decision trees</subject><subject>Discretization scheme</subject><subject>Humans</subject><subject>Machine learning</subject><subject>Rough sets</subject><subject>Sampling methods</subject><subject>Subtable</subject><issn>2160-133X</issn><isbn>1424409721</isbn><isbn>9781424409723</isbn><isbn>9781424409730</isbn><isbn>142440973X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j8tKxDAUQCMqODP2B3TTH2i9N48mcVcyPgY6uFFwNyRpghH7oO1m_HpBx9XhbA4cQm4QSkTQdzuzb0xJAWTJmQSpxBnJtFTIKeegJYNzsv4XihdkRbGCAhl7vyLZPH8CAMqKA2UrUm6Pve2Sz7dp9lNY0rdd0tDf53Vuhs6l_lfzehynwfqPa3IZ7dccshM35O3x4dU8F83L087UTZFQiqVA11qntODUKy-E94FKrbymsYWWOwisiqgUdVGIqARHrSWvkDsEG5B5tiG3f90UQjiMU-rsdDycdtkP7zBFaA</recordid><startdate>200708</startdate><enddate>200708</enddate><creator>Fan Min</creator><creator>Qi-He Liu</creator><creator>Hong-Bin Cai</creator><creator>Zhong-Jian Bai</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200708</creationdate><title>Dynamic Discretization: A Combination Approach</title><author>Fan Min ; Qi-He Liu ; Hong-Bin Cai ; Zhong-Jian Bai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-1bdab89542c8c55cce2798c92fd0d4b0e36f1882bf55f85419974614b10ae13c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Artificial intelligence</topic><topic>Computer aided instruction</topic><topic>Computer science</topic><topic>Cybernetics</topic><topic>Data analysis</topic><topic>Decision trees</topic><topic>Discretization scheme</topic><topic>Humans</topic><topic>Machine learning</topic><topic>Rough sets</topic><topic>Sampling methods</topic><topic>Subtable</topic><toplevel>online_resources</toplevel><creatorcontrib>Fan Min</creatorcontrib><creatorcontrib>Qi-He Liu</creatorcontrib><creatorcontrib>Hong-Bin Cai</creatorcontrib><creatorcontrib>Zhong-Jian Bai</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fan Min</au><au>Qi-He Liu</au><au>Hong-Bin Cai</au><au>Zhong-Jian Bai</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Dynamic Discretization: A Combination Approach</atitle><btitle>2007 International Conference on Machine Learning and Cybernetics</btitle><stitle>ICMLC</stitle><date>2007-08</date><risdate>2007</risdate><volume>7</volume><spage>3672</spage><epage>3677</epage><pages>3672-3677</pages><issn>2160-133X</issn><isbn>1424409721</isbn><isbn>9781424409723</isbn><eisbn>9781424409730</eisbn><eisbn>142440973X</eisbn><abstract>Supervised discretization refers to the problem of transforming continuous attributes of a decision table into discredited ones. It is important for some artificial intelligence theories where nominal data are required or preferred. Instead of depending on the experience of human experts, supervised discretization algorithms learn from the data. However, the results of such algorithms may be sensitive to the change of the data. In this paper, we propose to compute more stable and informative discretization schemes through subtable sampling and scheme combination. Discretization schemes computed in this way are called dynamic discretization schemes. Experimental results on some well-known datasets show that they are helpful for obtaining decision rules with better accuracy and F-measure.</abstract><pub>IEEE</pub><doi>10.1109/ICMLC.2007.4370785</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2160-133X |
ispartof | 2007 International Conference on Machine Learning and Cybernetics, 2007, Vol.7, p.3672-3677 |
issn | 2160-133X |
language | eng |
recordid | cdi_ieee_primary_4370785 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial intelligence Computer aided instruction Computer science Cybernetics Data analysis Decision trees Discretization scheme Humans Machine learning Rough sets Sampling methods Subtable |
title | Dynamic Discretization: A Combination Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A05%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Dynamic%20Discretization:%20A%20Combination%20Approach&rft.btitle=2007%20International%20Conference%20on%20Machine%20Learning%20and%20Cybernetics&rft.au=Fan%20Min&rft.date=2007-08&rft.volume=7&rft.spage=3672&rft.epage=3677&rft.pages=3672-3677&rft.issn=2160-133X&rft.isbn=1424409721&rft.isbn_list=9781424409723&rft_id=info:doi/10.1109/ICMLC.2007.4370785&rft_dat=%3Cieee_6IE%3E4370785%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424409730&rft.eisbn_list=142440973X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4370785&rfr_iscdi=true |