A Region-Based SRG Algorithm for Color Image Segmentation

In this paper, we present an automatic seeded region growing (SRG) algorithm for color image segmentation. The method uses regions rather than pixels as the seeds of SRG. The architecture of the algorithm can be described as follows. First, the input RGB color image is transformed into HSI color spa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jia-Nan Wang, Jun Kong, Ying-Hua Lu, Wen-Xiang Gu, Ming-Hao Yin, Yong-Peng Xiao
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1547
container_issue
container_start_page 1542
container_title
container_volume 3
creator Jia-Nan Wang
Jun Kong
Ying-Hua Lu
Wen-Xiang Gu
Ming-Hao Yin
Yong-Peng Xiao
description In this paper, we present an automatic seeded region growing (SRG) algorithm for color image segmentation. The method uses regions rather than pixels as the seeds of SRG. The architecture of the algorithm can be described as follows. First, the input RGB color image is transformed into HSI color space. Second, we use watershed segmentation to initialize the image. Third, the initial region seeds are automatically selected according to two rules advanced by us. Fourth, the color image is segmented into regions. Finally, region-merging method is used to merge similar or small regions. Compared with pixel-based SRG algorithm, our method can yield more robust and precise results. Experimental results have also shown that our algorithm can produce excellent results.
doi_str_mv 10.1109/ICMLC.2007.4370390
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4370390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4370390</ieee_id><sourcerecordid>4370390</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-82eb77ead5bb87574c65417c9638041c15382c64ae5552649d58d60fece883953</originalsourceid><addsrcrecordid>eNo1j81Kw0AUhUdUsNa8gG7mBRLvnf9ZxqA1EBFaBXdlktzESNJIko1vb8G6OYdvcT44jN0iJIjg7_PspcgSAWATJS1ID2cs8tahEkqBtxLO2fU_CLxgK4EGYpTy44pF8_wFAGiNAiFXzKd8S203HuKHMFPNd9sNT_t2nLrlc-DNOPFs7I-ZD6ElvqN2oMMSluPghl02oZ8pOvWavT89vmXPcfG6ybO0iDu0eomdoNJaCrUuS2e1VZXRCm3ljXSgsEItnaiMCqS1Fkb5WrvaQEMVOSe9lmt29-ftiGj_PXVDmH72p-fyF6RQR8w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Region-Based SRG Algorithm for Color Image Segmentation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jia-Nan Wang ; Jun Kong ; Ying-Hua Lu ; Wen-Xiang Gu ; Ming-Hao Yin ; Yong-Peng Xiao</creator><creatorcontrib>Jia-Nan Wang ; Jun Kong ; Ying-Hua Lu ; Wen-Xiang Gu ; Ming-Hao Yin ; Yong-Peng Xiao</creatorcontrib><description>In this paper, we present an automatic seeded region growing (SRG) algorithm for color image segmentation. The method uses regions rather than pixels as the seeds of SRG. The architecture of the algorithm can be described as follows. First, the input RGB color image is transformed into HSI color space. Second, we use watershed segmentation to initialize the image. Third, the initial region seeds are automatically selected according to two rules advanced by us. Fourth, the color image is segmented into regions. Finally, region-merging method is used to merge similar or small regions. Compared with pixel-based SRG algorithm, our method can yield more robust and precise results. Experimental results have also shown that our algorithm can produce excellent results.</description><identifier>ISSN: 2160-133X</identifier><identifier>ISBN: 1424409721</identifier><identifier>ISBN: 9781424409723</identifier><identifier>EISBN: 9781424409730</identifier><identifier>EISBN: 142440973X</identifier><identifier>DOI: 10.1109/ICMLC.2007.4370390</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automatic seeded region growing ; Color image processing ; Computer science ; Cybernetics ; Image color analysis ; Image edge detection ; Image segmentation ; Image texture analysis ; Machine learning ; Partitioning algorithms ; Pattern recognition ; Pixel ; SRG ; Watershed segmentation</subject><ispartof>2007 International Conference on Machine Learning and Cybernetics, 2007, Vol.3, p.1542-1547</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4370390$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27912,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4370390$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jia-Nan Wang</creatorcontrib><creatorcontrib>Jun Kong</creatorcontrib><creatorcontrib>Ying-Hua Lu</creatorcontrib><creatorcontrib>Wen-Xiang Gu</creatorcontrib><creatorcontrib>Ming-Hao Yin</creatorcontrib><creatorcontrib>Yong-Peng Xiao</creatorcontrib><title>A Region-Based SRG Algorithm for Color Image Segmentation</title><title>2007 International Conference on Machine Learning and Cybernetics</title><addtitle>ICMLC</addtitle><description>In this paper, we present an automatic seeded region growing (SRG) algorithm for color image segmentation. The method uses regions rather than pixels as the seeds of SRG. The architecture of the algorithm can be described as follows. First, the input RGB color image is transformed into HSI color space. Second, we use watershed segmentation to initialize the image. Third, the initial region seeds are automatically selected according to two rules advanced by us. Fourth, the color image is segmented into regions. Finally, region-merging method is used to merge similar or small regions. Compared with pixel-based SRG algorithm, our method can yield more robust and precise results. Experimental results have also shown that our algorithm can produce excellent results.</description><subject>Automatic seeded region growing</subject><subject>Color image processing</subject><subject>Computer science</subject><subject>Cybernetics</subject><subject>Image color analysis</subject><subject>Image edge detection</subject><subject>Image segmentation</subject><subject>Image texture analysis</subject><subject>Machine learning</subject><subject>Partitioning algorithms</subject><subject>Pattern recognition</subject><subject>Pixel</subject><subject>SRG</subject><subject>Watershed segmentation</subject><issn>2160-133X</issn><isbn>1424409721</isbn><isbn>9781424409723</isbn><isbn>9781424409730</isbn><isbn>142440973X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j81Kw0AUhUdUsNa8gG7mBRLvnf9ZxqA1EBFaBXdlktzESNJIko1vb8G6OYdvcT44jN0iJIjg7_PspcgSAWATJS1ID2cs8tahEkqBtxLO2fU_CLxgK4EGYpTy44pF8_wFAGiNAiFXzKd8S203HuKHMFPNd9sNT_t2nLrlc-DNOPFs7I-ZD6ElvqN2oMMSluPghl02oZ8pOvWavT89vmXPcfG6ybO0iDu0eomdoNJaCrUuS2e1VZXRCm3ljXSgsEItnaiMCqS1Fkb5WrvaQEMVOSe9lmt29-ftiGj_PXVDmH72p-fyF6RQR8w</recordid><startdate>200708</startdate><enddate>200708</enddate><creator>Jia-Nan Wang</creator><creator>Jun Kong</creator><creator>Ying-Hua Lu</creator><creator>Wen-Xiang Gu</creator><creator>Ming-Hao Yin</creator><creator>Yong-Peng Xiao</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200708</creationdate><title>A Region-Based SRG Algorithm for Color Image Segmentation</title><author>Jia-Nan Wang ; Jun Kong ; Ying-Hua Lu ; Wen-Xiang Gu ; Ming-Hao Yin ; Yong-Peng Xiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-82eb77ead5bb87574c65417c9638041c15382c64ae5552649d58d60fece883953</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Automatic seeded region growing</topic><topic>Color image processing</topic><topic>Computer science</topic><topic>Cybernetics</topic><topic>Image color analysis</topic><topic>Image edge detection</topic><topic>Image segmentation</topic><topic>Image texture analysis</topic><topic>Machine learning</topic><topic>Partitioning algorithms</topic><topic>Pattern recognition</topic><topic>Pixel</topic><topic>SRG</topic><topic>Watershed segmentation</topic><toplevel>online_resources</toplevel><creatorcontrib>Jia-Nan Wang</creatorcontrib><creatorcontrib>Jun Kong</creatorcontrib><creatorcontrib>Ying-Hua Lu</creatorcontrib><creatorcontrib>Wen-Xiang Gu</creatorcontrib><creatorcontrib>Ming-Hao Yin</creatorcontrib><creatorcontrib>Yong-Peng Xiao</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jia-Nan Wang</au><au>Jun Kong</au><au>Ying-Hua Lu</au><au>Wen-Xiang Gu</au><au>Ming-Hao Yin</au><au>Yong-Peng Xiao</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Region-Based SRG Algorithm for Color Image Segmentation</atitle><btitle>2007 International Conference on Machine Learning and Cybernetics</btitle><stitle>ICMLC</stitle><date>2007-08</date><risdate>2007</risdate><volume>3</volume><spage>1542</spage><epage>1547</epage><pages>1542-1547</pages><issn>2160-133X</issn><isbn>1424409721</isbn><isbn>9781424409723</isbn><eisbn>9781424409730</eisbn><eisbn>142440973X</eisbn><abstract>In this paper, we present an automatic seeded region growing (SRG) algorithm for color image segmentation. The method uses regions rather than pixels as the seeds of SRG. The architecture of the algorithm can be described as follows. First, the input RGB color image is transformed into HSI color space. Second, we use watershed segmentation to initialize the image. Third, the initial region seeds are automatically selected according to two rules advanced by us. Fourth, the color image is segmented into regions. Finally, region-merging method is used to merge similar or small regions. Compared with pixel-based SRG algorithm, our method can yield more robust and precise results. Experimental results have also shown that our algorithm can produce excellent results.</abstract><pub>IEEE</pub><doi>10.1109/ICMLC.2007.4370390</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2160-133X
ispartof 2007 International Conference on Machine Learning and Cybernetics, 2007, Vol.3, p.1542-1547
issn 2160-133X
language eng
recordid cdi_ieee_primary_4370390
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Automatic seeded region growing
Color image processing
Computer science
Cybernetics
Image color analysis
Image edge detection
Image segmentation
Image texture analysis
Machine learning
Partitioning algorithms
Pattern recognition
Pixel
SRG
Watershed segmentation
title A Region-Based SRG Algorithm for Color Image Segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T22%3A34%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Region-Based%20SRG%20Algorithm%20for%20Color%20Image%20Segmentation&rft.btitle=2007%20International%20Conference%20on%20Machine%20Learning%20and%20Cybernetics&rft.au=Jia-Nan%20Wang&rft.date=2007-08&rft.volume=3&rft.spage=1542&rft.epage=1547&rft.pages=1542-1547&rft.issn=2160-133X&rft.isbn=1424409721&rft.isbn_list=9781424409723&rft_id=info:doi/10.1109/ICMLC.2007.4370390&rft_dat=%3Cieee_6IE%3E4370390%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424409730&rft.eisbn_list=142440973X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4370390&rfr_iscdi=true