Multi-Threshold Infrared Image Segmentation Based on the Modified Particle Swarm Optimization Algorithm

Threshold extraction is the fundamental step in multi-threshold image segmentation. This paper has introduced particle swarm optimization algorithm (PSO) for threshold extraction. But when dealing with the peaky high dimension function of maximum entropy for multi-threshold image segmentation, the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yi-Tong Liu, Ming-Yin Fu, Hong-Bin Gao
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 388
container_issue
container_start_page 383
container_title
container_volume 1
creator Yi-Tong Liu
Ming-Yin Fu
Hong-Bin Gao
description Threshold extraction is the fundamental step in multi-threshold image segmentation. This paper has introduced particle swarm optimization algorithm (PSO) for threshold extraction. But when dealing with the peaky high dimension function of maximum entropy for multi-threshold image segmentation, the conventional PSO is apt to be trapped in local optima called premature. This can cause image segmentation failure. This paper proposes a modified particle swarm optimization method (MPSO), which improves convergence speed and search capacity and avoid the premature phenomena when used in threshold extraction. Simulation results show that the MPSO has better performance and quicker speed. The experimental results also show that with the modified PSO as a threshold extraction method, the image is segmented fairly well and the segmentation speed improves greatly.
doi_str_mv 10.1109/ICMLC.2007.4370174
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4370174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4370174</ieee_id><sourcerecordid>4370174</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-c6d805fd41798d9775d69f8b0805a40bb0a2006eb779253a3125677bcb515f113</originalsourceid><addsrcrecordid>eNo1UF1Lw0AQPFHBWvMH9CV_IHX3PnK5xxr8KKRUsIJv5ZJckpOkKZcT0V_vQevTzuzsDMwScouwQAR1v8rXRb6gAHLBmQSU_IxESmbIKeegJINzcv1PKF6QGcUUEmTs44pE0_QJEEwpB8pmpF1_9d4m286ZqRv7Ol7tG6edCWDQrYnfTDuYvdfejvv4QU9BCMB3Jl6PtW1s4K_aeVv14fZbuyHeHLwd7O_Rsezb0VnfDTfkstH9ZKLTnJP3p8dt_pIUm-dVviwSi1L4pErrDERTc5Qqq5WUok5Vk5UQtppDWYIOxVNTSqmoYJohFamUZVUKFA0im5O7Y641xuwOzg7a_exOf2J_nz9Z5g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multi-Threshold Infrared Image Segmentation Based on the Modified Particle Swarm Optimization Algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yi-Tong Liu ; Ming-Yin Fu ; Hong-Bin Gao</creator><creatorcontrib>Yi-Tong Liu ; Ming-Yin Fu ; Hong-Bin Gao</creatorcontrib><description>Threshold extraction is the fundamental step in multi-threshold image segmentation. This paper has introduced particle swarm optimization algorithm (PSO) for threshold extraction. But when dealing with the peaky high dimension function of maximum entropy for multi-threshold image segmentation, the conventional PSO is apt to be trapped in local optima called premature. This can cause image segmentation failure. This paper proposes a modified particle swarm optimization method (MPSO), which improves convergence speed and search capacity and avoid the premature phenomena when used in threshold extraction. Simulation results show that the MPSO has better performance and quicker speed. The experimental results also show that with the modified PSO as a threshold extraction method, the image is segmented fairly well and the segmentation speed improves greatly.</description><identifier>ISSN: 2160-133X</identifier><identifier>ISBN: 1424409721</identifier><identifier>ISBN: 9781424409723</identifier><identifier>EISBN: 9781424409730</identifier><identifier>EISBN: 142440973X</identifier><identifier>DOI: 10.1109/ICMLC.2007.4370174</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automation ; Cybernetics ; Data mining ; Entropy ; Image segmentation ; Information science ; Infrared image segmentation ; Infrared imaging ; Machine learning ; Machine learning algorithms ; Multi-threshold ; Particle swarm optimization ; Particle swarm optimization algorithm</subject><ispartof>2007 International Conference on Machine Learning and Cybernetics, 2007, Vol.1, p.383-388</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4370174$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4370174$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yi-Tong Liu</creatorcontrib><creatorcontrib>Ming-Yin Fu</creatorcontrib><creatorcontrib>Hong-Bin Gao</creatorcontrib><title>Multi-Threshold Infrared Image Segmentation Based on the Modified Particle Swarm Optimization Algorithm</title><title>2007 International Conference on Machine Learning and Cybernetics</title><addtitle>ICMLC</addtitle><description>Threshold extraction is the fundamental step in multi-threshold image segmentation. This paper has introduced particle swarm optimization algorithm (PSO) for threshold extraction. But when dealing with the peaky high dimension function of maximum entropy for multi-threshold image segmentation, the conventional PSO is apt to be trapped in local optima called premature. This can cause image segmentation failure. This paper proposes a modified particle swarm optimization method (MPSO), which improves convergence speed and search capacity and avoid the premature phenomena when used in threshold extraction. Simulation results show that the MPSO has better performance and quicker speed. The experimental results also show that with the modified PSO as a threshold extraction method, the image is segmented fairly well and the segmentation speed improves greatly.</description><subject>Automation</subject><subject>Cybernetics</subject><subject>Data mining</subject><subject>Entropy</subject><subject>Image segmentation</subject><subject>Information science</subject><subject>Infrared image segmentation</subject><subject>Infrared imaging</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Multi-threshold</subject><subject>Particle swarm optimization</subject><subject>Particle swarm optimization algorithm</subject><issn>2160-133X</issn><isbn>1424409721</isbn><isbn>9781424409723</isbn><isbn>9781424409730</isbn><isbn>142440973X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UF1Lw0AQPFHBWvMH9CV_IHX3PnK5xxr8KKRUsIJv5ZJckpOkKZcT0V_vQevTzuzsDMwScouwQAR1v8rXRb6gAHLBmQSU_IxESmbIKeegJINzcv1PKF6QGcUUEmTs44pE0_QJEEwpB8pmpF1_9d4m286ZqRv7Ol7tG6edCWDQrYnfTDuYvdfejvv4QU9BCMB3Jl6PtW1s4K_aeVv14fZbuyHeHLwd7O_Rsezb0VnfDTfkstH9ZKLTnJP3p8dt_pIUm-dVviwSi1L4pErrDERTc5Qqq5WUok5Vk5UQtppDWYIOxVNTSqmoYJohFamUZVUKFA0im5O7Y641xuwOzg7a_exOf2J_nz9Z5g</recordid><startdate>200708</startdate><enddate>200708</enddate><creator>Yi-Tong Liu</creator><creator>Ming-Yin Fu</creator><creator>Hong-Bin Gao</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200708</creationdate><title>Multi-Threshold Infrared Image Segmentation Based on the Modified Particle Swarm Optimization Algorithm</title><author>Yi-Tong Liu ; Ming-Yin Fu ; Hong-Bin Gao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-c6d805fd41798d9775d69f8b0805a40bb0a2006eb779253a3125677bcb515f113</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Automation</topic><topic>Cybernetics</topic><topic>Data mining</topic><topic>Entropy</topic><topic>Image segmentation</topic><topic>Information science</topic><topic>Infrared image segmentation</topic><topic>Infrared imaging</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Multi-threshold</topic><topic>Particle swarm optimization</topic><topic>Particle swarm optimization algorithm</topic><toplevel>online_resources</toplevel><creatorcontrib>Yi-Tong Liu</creatorcontrib><creatorcontrib>Ming-Yin Fu</creatorcontrib><creatorcontrib>Hong-Bin Gao</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yi-Tong Liu</au><au>Ming-Yin Fu</au><au>Hong-Bin Gao</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multi-Threshold Infrared Image Segmentation Based on the Modified Particle Swarm Optimization Algorithm</atitle><btitle>2007 International Conference on Machine Learning and Cybernetics</btitle><stitle>ICMLC</stitle><date>2007-08</date><risdate>2007</risdate><volume>1</volume><spage>383</spage><epage>388</epage><pages>383-388</pages><issn>2160-133X</issn><isbn>1424409721</isbn><isbn>9781424409723</isbn><eisbn>9781424409730</eisbn><eisbn>142440973X</eisbn><abstract>Threshold extraction is the fundamental step in multi-threshold image segmentation. This paper has introduced particle swarm optimization algorithm (PSO) for threshold extraction. But when dealing with the peaky high dimension function of maximum entropy for multi-threshold image segmentation, the conventional PSO is apt to be trapped in local optima called premature. This can cause image segmentation failure. This paper proposes a modified particle swarm optimization method (MPSO), which improves convergence speed and search capacity and avoid the premature phenomena when used in threshold extraction. Simulation results show that the MPSO has better performance and quicker speed. The experimental results also show that with the modified PSO as a threshold extraction method, the image is segmented fairly well and the segmentation speed improves greatly.</abstract><pub>IEEE</pub><doi>10.1109/ICMLC.2007.4370174</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2160-133X
ispartof 2007 International Conference on Machine Learning and Cybernetics, 2007, Vol.1, p.383-388
issn 2160-133X
language eng
recordid cdi_ieee_primary_4370174
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Automation
Cybernetics
Data mining
Entropy
Image segmentation
Information science
Infrared image segmentation
Infrared imaging
Machine learning
Machine learning algorithms
Multi-threshold
Particle swarm optimization
Particle swarm optimization algorithm
title Multi-Threshold Infrared Image Segmentation Based on the Modified Particle Swarm Optimization Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T22%3A56%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multi-Threshold%20Infrared%20Image%20Segmentation%20Based%20on%20the%20Modified%20Particle%20Swarm%20Optimization%20Algorithm&rft.btitle=2007%20International%20Conference%20on%20Machine%20Learning%20and%20Cybernetics&rft.au=Yi-Tong%20Liu&rft.date=2007-08&rft.volume=1&rft.spage=383&rft.epage=388&rft.pages=383-388&rft.issn=2160-133X&rft.isbn=1424409721&rft.isbn_list=9781424409723&rft_id=info:doi/10.1109/ICMLC.2007.4370174&rft_dat=%3Cieee_6IE%3E4370174%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424409730&rft.eisbn_list=142440973X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4370174&rfr_iscdi=true