Adaptive uncertainty estimation for particle filter-based trackers

In particle filter-based visual trackers, dynamic velocity components are typically incorporated into the state update equations. In these cases, there is a risk that the uncertainty in the model update stage can become amplified in unexpected and undesirable ways, leading to erroneous behavior of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bagdanov, Andrew D., Del Bimbo, Alberto, Dini, Fabrizio, Nunziati, Walter
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 336
container_issue
container_start_page 331
container_title
container_volume
creator Bagdanov, Andrew D.
Del Bimbo, Alberto
Dini, Fabrizio
Nunziati, Walter
description In particle filter-based visual trackers, dynamic velocity components are typically incorporated into the state update equations. In these cases, there is a risk that the uncertainty in the model update stage can become amplified in unexpected and undesirable ways, leading to erroneous behavior of the tracker. To deal with this problem, we propose a continuously adaptive approach to estimating uncertainty in the particle filter, one that balances the uncertainty in its static and dynamic elements. We provide quantitative performance evaluation of the resulting particle filter tracker on a set of ten video sequences. Results are reported in terms of a metric that can be used to objectively evaluate the performance of visual trackers. This metric is used to compare our modified particle filter tracker and the continuously adaptive mean shift tracker. Results show that the performance of the particle filter is significantly improved through adaptive parameter estimation, particularly in cases of occlusions and nonlinear target motion.
doi_str_mv 10.1109/ICIAP.2007.4362800
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4362800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4362800</ieee_id><sourcerecordid>4362800</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-acfc75a1201ed096e8e61aa8c8e6f8f75c07f784e2214e15847b8148c405811c3</originalsourceid><addsrcrecordid>eNotj8FKxDAURQMijI7zA7rJD7S-lyZNuqxFncKALpz1kElfIFo7JYnC_L0F52zO7nAvY_cIJSI0j33Xt--lANClrGphAK7YLei6UcJorVZsk9InLFSN1FjfsKd2sHMOv8R_Jkcx2zDlM6eUw7fN4TRxf4p8tjEHNxL3YcwUi6NNNPAcrfuimO7Ytbdjos3Fa7Z_ef7otsXu7bXv2l0RUKtcWOedVhYFIA3Q1GSoRmuNW-yN18qB9tpIEgIloTJSHw1K4yQog-iqNXv47wYiOsxxWRjPh8vN6g9eREkH</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Adaptive uncertainty estimation for particle filter-based trackers</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bagdanov, Andrew D. ; Del Bimbo, Alberto ; Dini, Fabrizio ; Nunziati, Walter</creator><creatorcontrib>Bagdanov, Andrew D. ; Del Bimbo, Alberto ; Dini, Fabrizio ; Nunziati, Walter</creatorcontrib><description>In particle filter-based visual trackers, dynamic velocity components are typically incorporated into the state update equations. In these cases, there is a risk that the uncertainty in the model update stage can become amplified in unexpected and undesirable ways, leading to erroneous behavior of the tracker. To deal with this problem, we propose a continuously adaptive approach to estimating uncertainty in the particle filter, one that balances the uncertainty in its static and dynamic elements. We provide quantitative performance evaluation of the resulting particle filter tracker on a set of ten video sequences. Results are reported in terms of a metric that can be used to objectively evaluate the performance of visual trackers. This metric is used to compare our modified particle filter tracker and the continuously adaptive mean shift tracker. Results show that the performance of the particle filter is significantly improved through adaptive parameter estimation, particularly in cases of occlusions and nonlinear target motion.</description><identifier>ISBN: 0769528775</identifier><identifier>ISBN: 9780769528779</identifier><identifier>DOI: 10.1109/ICIAP.2007.4362800</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive filters ; Application software ; Computer vision ; Parameter estimation ; Particle filters ; Particle tracking ; State estimation ; Target tracking ; Uncertainty ; Video sequences</subject><ispartof>14th International Conference on Image Analysis and Processing (ICIAP 2007), 2007, p.331-336</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4362800$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4362800$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bagdanov, Andrew D.</creatorcontrib><creatorcontrib>Del Bimbo, Alberto</creatorcontrib><creatorcontrib>Dini, Fabrizio</creatorcontrib><creatorcontrib>Nunziati, Walter</creatorcontrib><title>Adaptive uncertainty estimation for particle filter-based trackers</title><title>14th International Conference on Image Analysis and Processing (ICIAP 2007)</title><addtitle>ICIAP</addtitle><description>In particle filter-based visual trackers, dynamic velocity components are typically incorporated into the state update equations. In these cases, there is a risk that the uncertainty in the model update stage can become amplified in unexpected and undesirable ways, leading to erroneous behavior of the tracker. To deal with this problem, we propose a continuously adaptive approach to estimating uncertainty in the particle filter, one that balances the uncertainty in its static and dynamic elements. We provide quantitative performance evaluation of the resulting particle filter tracker on a set of ten video sequences. Results are reported in terms of a metric that can be used to objectively evaluate the performance of visual trackers. This metric is used to compare our modified particle filter tracker and the continuously adaptive mean shift tracker. Results show that the performance of the particle filter is significantly improved through adaptive parameter estimation, particularly in cases of occlusions and nonlinear target motion.</description><subject>Adaptive filters</subject><subject>Application software</subject><subject>Computer vision</subject><subject>Parameter estimation</subject><subject>Particle filters</subject><subject>Particle tracking</subject><subject>State estimation</subject><subject>Target tracking</subject><subject>Uncertainty</subject><subject>Video sequences</subject><isbn>0769528775</isbn><isbn>9780769528779</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8FKxDAURQMijI7zA7rJD7S-lyZNuqxFncKALpz1kElfIFo7JYnC_L0F52zO7nAvY_cIJSI0j33Xt--lANClrGphAK7YLei6UcJorVZsk9InLFSN1FjfsKd2sHMOv8R_Jkcx2zDlM6eUw7fN4TRxf4p8tjEHNxL3YcwUi6NNNPAcrfuimO7Ytbdjos3Fa7Z_ef7otsXu7bXv2l0RUKtcWOedVhYFIA3Q1GSoRmuNW-yN18qB9tpIEgIloTJSHw1K4yQog-iqNXv47wYiOsxxWRjPh8vN6g9eREkH</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>Bagdanov, Andrew D.</creator><creator>Del Bimbo, Alberto</creator><creator>Dini, Fabrizio</creator><creator>Nunziati, Walter</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200709</creationdate><title>Adaptive uncertainty estimation for particle filter-based trackers</title><author>Bagdanov, Andrew D. ; Del Bimbo, Alberto ; Dini, Fabrizio ; Nunziati, Walter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-acfc75a1201ed096e8e61aa8c8e6f8f75c07f784e2214e15847b8148c405811c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Adaptive filters</topic><topic>Application software</topic><topic>Computer vision</topic><topic>Parameter estimation</topic><topic>Particle filters</topic><topic>Particle tracking</topic><topic>State estimation</topic><topic>Target tracking</topic><topic>Uncertainty</topic><topic>Video sequences</topic><toplevel>online_resources</toplevel><creatorcontrib>Bagdanov, Andrew D.</creatorcontrib><creatorcontrib>Del Bimbo, Alberto</creatorcontrib><creatorcontrib>Dini, Fabrizio</creatorcontrib><creatorcontrib>Nunziati, Walter</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bagdanov, Andrew D.</au><au>Del Bimbo, Alberto</au><au>Dini, Fabrizio</au><au>Nunziati, Walter</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Adaptive uncertainty estimation for particle filter-based trackers</atitle><btitle>14th International Conference on Image Analysis and Processing (ICIAP 2007)</btitle><stitle>ICIAP</stitle><date>2007-09</date><risdate>2007</risdate><spage>331</spage><epage>336</epage><pages>331-336</pages><isbn>0769528775</isbn><isbn>9780769528779</isbn><abstract>In particle filter-based visual trackers, dynamic velocity components are typically incorporated into the state update equations. In these cases, there is a risk that the uncertainty in the model update stage can become amplified in unexpected and undesirable ways, leading to erroneous behavior of the tracker. To deal with this problem, we propose a continuously adaptive approach to estimating uncertainty in the particle filter, one that balances the uncertainty in its static and dynamic elements. We provide quantitative performance evaluation of the resulting particle filter tracker on a set of ten video sequences. Results are reported in terms of a metric that can be used to objectively evaluate the performance of visual trackers. This metric is used to compare our modified particle filter tracker and the continuously adaptive mean shift tracker. Results show that the performance of the particle filter is significantly improved through adaptive parameter estimation, particularly in cases of occlusions and nonlinear target motion.</abstract><pub>IEEE</pub><doi>10.1109/ICIAP.2007.4362800</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0769528775
ispartof 14th International Conference on Image Analysis and Processing (ICIAP 2007), 2007, p.331-336
issn
language eng
recordid cdi_ieee_primary_4362800
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptive filters
Application software
Computer vision
Parameter estimation
Particle filters
Particle tracking
State estimation
Target tracking
Uncertainty
Video sequences
title Adaptive uncertainty estimation for particle filter-based trackers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A04%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Adaptive%20uncertainty%20estimation%20for%20particle%20filter-based%20trackers&rft.btitle=14th%20International%20Conference%20on%20Image%20Analysis%20and%20Processing%20(ICIAP%202007)&rft.au=Bagdanov,%20Andrew%20D.&rft.date=2007-09&rft.spage=331&rft.epage=336&rft.pages=331-336&rft.isbn=0769528775&rft.isbn_list=9780769528779&rft_id=info:doi/10.1109/ICIAP.2007.4362800&rft_dat=%3Cieee_6IE%3E4362800%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4362800&rfr_iscdi=true