Adaptive uncertainty estimation for particle filter-based trackers
In particle filter-based visual trackers, dynamic velocity components are typically incorporated into the state update equations. In these cases, there is a risk that the uncertainty in the model update stage can become amplified in unexpected and undesirable ways, leading to erroneous behavior of t...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 336 |
---|---|
container_issue | |
container_start_page | 331 |
container_title | |
container_volume | |
creator | Bagdanov, Andrew D. Del Bimbo, Alberto Dini, Fabrizio Nunziati, Walter |
description | In particle filter-based visual trackers, dynamic velocity components are typically incorporated into the state update equations. In these cases, there is a risk that the uncertainty in the model update stage can become amplified in unexpected and undesirable ways, leading to erroneous behavior of the tracker. To deal with this problem, we propose a continuously adaptive approach to estimating uncertainty in the particle filter, one that balances the uncertainty in its static and dynamic elements. We provide quantitative performance evaluation of the resulting particle filter tracker on a set of ten video sequences. Results are reported in terms of a metric that can be used to objectively evaluate the performance of visual trackers. This metric is used to compare our modified particle filter tracker and the continuously adaptive mean shift tracker. Results show that the performance of the particle filter is significantly improved through adaptive parameter estimation, particularly in cases of occlusions and nonlinear target motion. |
doi_str_mv | 10.1109/ICIAP.2007.4362800 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4362800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4362800</ieee_id><sourcerecordid>4362800</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-acfc75a1201ed096e8e61aa8c8e6f8f75c07f784e2214e15847b8148c405811c3</originalsourceid><addsrcrecordid>eNotj8FKxDAURQMijI7zA7rJD7S-lyZNuqxFncKALpz1kElfIFo7JYnC_L0F52zO7nAvY_cIJSI0j33Xt--lANClrGphAK7YLei6UcJorVZsk9InLFSN1FjfsKd2sHMOv8R_Jkcx2zDlM6eUw7fN4TRxf4p8tjEHNxL3YcwUi6NNNPAcrfuimO7Ytbdjos3Fa7Z_ef7otsXu7bXv2l0RUKtcWOedVhYFIA3Q1GSoRmuNW-yN18qB9tpIEgIloTJSHw1K4yQog-iqNXv47wYiOsxxWRjPh8vN6g9eREkH</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Adaptive uncertainty estimation for particle filter-based trackers</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bagdanov, Andrew D. ; Del Bimbo, Alberto ; Dini, Fabrizio ; Nunziati, Walter</creator><creatorcontrib>Bagdanov, Andrew D. ; Del Bimbo, Alberto ; Dini, Fabrizio ; Nunziati, Walter</creatorcontrib><description>In particle filter-based visual trackers, dynamic velocity components are typically incorporated into the state update equations. In these cases, there is a risk that the uncertainty in the model update stage can become amplified in unexpected and undesirable ways, leading to erroneous behavior of the tracker. To deal with this problem, we propose a continuously adaptive approach to estimating uncertainty in the particle filter, one that balances the uncertainty in its static and dynamic elements. We provide quantitative performance evaluation of the resulting particle filter tracker on a set of ten video sequences. Results are reported in terms of a metric that can be used to objectively evaluate the performance of visual trackers. This metric is used to compare our modified particle filter tracker and the continuously adaptive mean shift tracker. Results show that the performance of the particle filter is significantly improved through adaptive parameter estimation, particularly in cases of occlusions and nonlinear target motion.</description><identifier>ISBN: 0769528775</identifier><identifier>ISBN: 9780769528779</identifier><identifier>DOI: 10.1109/ICIAP.2007.4362800</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive filters ; Application software ; Computer vision ; Parameter estimation ; Particle filters ; Particle tracking ; State estimation ; Target tracking ; Uncertainty ; Video sequences</subject><ispartof>14th International Conference on Image Analysis and Processing (ICIAP 2007), 2007, p.331-336</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4362800$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4362800$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bagdanov, Andrew D.</creatorcontrib><creatorcontrib>Del Bimbo, Alberto</creatorcontrib><creatorcontrib>Dini, Fabrizio</creatorcontrib><creatorcontrib>Nunziati, Walter</creatorcontrib><title>Adaptive uncertainty estimation for particle filter-based trackers</title><title>14th International Conference on Image Analysis and Processing (ICIAP 2007)</title><addtitle>ICIAP</addtitle><description>In particle filter-based visual trackers, dynamic velocity components are typically incorporated into the state update equations. In these cases, there is a risk that the uncertainty in the model update stage can become amplified in unexpected and undesirable ways, leading to erroneous behavior of the tracker. To deal with this problem, we propose a continuously adaptive approach to estimating uncertainty in the particle filter, one that balances the uncertainty in its static and dynamic elements. We provide quantitative performance evaluation of the resulting particle filter tracker on a set of ten video sequences. Results are reported in terms of a metric that can be used to objectively evaluate the performance of visual trackers. This metric is used to compare our modified particle filter tracker and the continuously adaptive mean shift tracker. Results show that the performance of the particle filter is significantly improved through adaptive parameter estimation, particularly in cases of occlusions and nonlinear target motion.</description><subject>Adaptive filters</subject><subject>Application software</subject><subject>Computer vision</subject><subject>Parameter estimation</subject><subject>Particle filters</subject><subject>Particle tracking</subject><subject>State estimation</subject><subject>Target tracking</subject><subject>Uncertainty</subject><subject>Video sequences</subject><isbn>0769528775</isbn><isbn>9780769528779</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8FKxDAURQMijI7zA7rJD7S-lyZNuqxFncKALpz1kElfIFo7JYnC_L0F52zO7nAvY_cIJSI0j33Xt--lANClrGphAK7YLei6UcJorVZsk9InLFSN1FjfsKd2sHMOv8R_Jkcx2zDlM6eUw7fN4TRxf4p8tjEHNxL3YcwUi6NNNPAcrfuimO7Ytbdjos3Fa7Z_ef7otsXu7bXv2l0RUKtcWOedVhYFIA3Q1GSoRmuNW-yN18qB9tpIEgIloTJSHw1K4yQog-iqNXv47wYiOsxxWRjPh8vN6g9eREkH</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>Bagdanov, Andrew D.</creator><creator>Del Bimbo, Alberto</creator><creator>Dini, Fabrizio</creator><creator>Nunziati, Walter</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200709</creationdate><title>Adaptive uncertainty estimation for particle filter-based trackers</title><author>Bagdanov, Andrew D. ; Del Bimbo, Alberto ; Dini, Fabrizio ; Nunziati, Walter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-acfc75a1201ed096e8e61aa8c8e6f8f75c07f784e2214e15847b8148c405811c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Adaptive filters</topic><topic>Application software</topic><topic>Computer vision</topic><topic>Parameter estimation</topic><topic>Particle filters</topic><topic>Particle tracking</topic><topic>State estimation</topic><topic>Target tracking</topic><topic>Uncertainty</topic><topic>Video sequences</topic><toplevel>online_resources</toplevel><creatorcontrib>Bagdanov, Andrew D.</creatorcontrib><creatorcontrib>Del Bimbo, Alberto</creatorcontrib><creatorcontrib>Dini, Fabrizio</creatorcontrib><creatorcontrib>Nunziati, Walter</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bagdanov, Andrew D.</au><au>Del Bimbo, Alberto</au><au>Dini, Fabrizio</au><au>Nunziati, Walter</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Adaptive uncertainty estimation for particle filter-based trackers</atitle><btitle>14th International Conference on Image Analysis and Processing (ICIAP 2007)</btitle><stitle>ICIAP</stitle><date>2007-09</date><risdate>2007</risdate><spage>331</spage><epage>336</epage><pages>331-336</pages><isbn>0769528775</isbn><isbn>9780769528779</isbn><abstract>In particle filter-based visual trackers, dynamic velocity components are typically incorporated into the state update equations. In these cases, there is a risk that the uncertainty in the model update stage can become amplified in unexpected and undesirable ways, leading to erroneous behavior of the tracker. To deal with this problem, we propose a continuously adaptive approach to estimating uncertainty in the particle filter, one that balances the uncertainty in its static and dynamic elements. We provide quantitative performance evaluation of the resulting particle filter tracker on a set of ten video sequences. Results are reported in terms of a metric that can be used to objectively evaluate the performance of visual trackers. This metric is used to compare our modified particle filter tracker and the continuously adaptive mean shift tracker. Results show that the performance of the particle filter is significantly improved through adaptive parameter estimation, particularly in cases of occlusions and nonlinear target motion.</abstract><pub>IEEE</pub><doi>10.1109/ICIAP.2007.4362800</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0769528775 |
ispartof | 14th International Conference on Image Analysis and Processing (ICIAP 2007), 2007, p.331-336 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4362800 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Adaptive filters Application software Computer vision Parameter estimation Particle filters Particle tracking State estimation Target tracking Uncertainty Video sequences |
title | Adaptive uncertainty estimation for particle filter-based trackers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A04%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Adaptive%20uncertainty%20estimation%20for%20particle%20filter-based%20trackers&rft.btitle=14th%20International%20Conference%20on%20Image%20Analysis%20and%20Processing%20(ICIAP%202007)&rft.au=Bagdanov,%20Andrew%20D.&rft.date=2007-09&rft.spage=331&rft.epage=336&rft.pages=331-336&rft.isbn=0769528775&rft.isbn_list=9780769528779&rft_id=info:doi/10.1109/ICIAP.2007.4362800&rft_dat=%3Cieee_6IE%3E4362800%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4362800&rfr_iscdi=true |