A Novel Breast Tissue Density Classification Methodology
It has been shown that the accuracy of mammographic abnormality detection methods is strongly dependent on the breast tissue characteristics, where a dense breast drastically reduces detection sensitivity. In addition, breast tissue density is widely accepted to be an important risk indicator for th...
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2008-01, Vol.12 (1), p.55-65 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 65 |
---|---|
container_issue | 1 |
container_start_page | 55 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 12 |
creator | Oliver, A. Freixenet, J. Marti, R. Pont, J. Perez, E. Denton, E.R.E. Zwiggelaar, R. |
description | It has been shown that the accuracy of mammographic abnormality detection methods is strongly dependent on the breast tissue characteristics, where a dense breast drastically reduces detection sensitivity. In addition, breast tissue density is widely accepted to be an important risk indicator for the development of breast cancer. Here, we describe the development of an automatic breast tissue classification methodology, which can be summarized in a number of distinct steps: 1) the segmentation of the breast area into fatty versus dense mammographic tissue; 2) the extraction of morphological and texture features from the segmented breast areas; and 3) the use of a Bayesian combination of a number of classifiers. The evaluation, based on a large number of cases from two different mammographic data sets, shows a strong correlation ( and 0.67 for the two data sets) between automatic and expert-based Breast Imaging Reporting and Data System mammographic density assessment. |
doi_str_mv | 10.1109/TITB.2007.903514 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4358897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4358897</ieee_id><sourcerecordid>876240348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c601t-7a9c203973948889b3715d3a9abfa95f33079486bd7c75826c3ab2224699689f3</originalsourceid><addsrcrecordid>eNqFks2LFDEQxRtR3HX1LgjS7EFPPVZSSSo57o5fC6texnNIZ9KapWeyJt3C_PdmmMEFD84hJEX9XlG8vKZ5yWDBGJh3q5vV9YID0MIASiYeNedMSt0BIH9c36BNR0TsrHlWyh0AE5Lh0-aMaU6VofNGX7Vf0-8wttc5uDK1q1jKHNr3YVvitGuXoyslDtG7KaZt-yVMP9M6jenH7nnzZHBjCS-O90Xz_eOH1fJzd_vt083y6rbzCtjUkTOeAxpCI7TWpkdico3OuH5wRg6IQLWj-jV5kporj67nnAtljNJmwIuGHeb6Mnubgw-5LmOTiw_F_nAgbpFLBqJq3h409zn9mkOZ7CYWH8bRbUOai61mKZQc-ElSk-ICUOhKvvkvScC10fI0iEKgYkqdBDkoJlBSBS__Ae_SnLfVdasVp-qTMBWCo085lZLDYO9z3Li8swzsPix2Hxa7D4s9hKVKXh_nzv0mrB8Ex3RU4NUBiCGEv-26U_1Iwj9jcL4z</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862796849</pqid></control><display><type>article</type><title>A Novel Breast Tissue Density Classification Methodology</title><source>IEEE Electronic Library (IEL)</source><creator>Oliver, A. ; Freixenet, J. ; Marti, R. ; Pont, J. ; Perez, E. ; Denton, E.R.E. ; Zwiggelaar, R.</creator><creatorcontrib>Oliver, A. ; Freixenet, J. ; Marti, R. ; Pont, J. ; Perez, E. ; Denton, E.R.E. ; Zwiggelaar, R.</creatorcontrib><description>It has been shown that the accuracy of mammographic abnormality detection methods is strongly dependent on the breast tissue characteristics, where a dense breast drastically reduces detection sensitivity. In addition, breast tissue density is widely accepted to be an important risk indicator for the development of breast cancer. Here, we describe the development of an automatic breast tissue classification methodology, which can be summarized in a number of distinct steps: 1) the segmentation of the breast area into fatty versus dense mammographic tissue; 2) the extraction of morphological and texture features from the segmented breast areas; and 3) the use of a Bayesian combination of a number of classifiers. The evaluation, based on a large number of cases from two different mammographic data sets, shows a strong correlation ( and 0.67 for the two data sets) between automatic and expert-based Breast Imaging Reporting and Data System mammographic density assessment.</description><identifier>ISSN: 1089-7771</identifier><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 1558-0032</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/TITB.2007.903514</identifier><identifier>PMID: 18270037</identifier><identifier>CODEN: ITIBFX</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Automation ; Bayes Theorem ; Bayesian methods ; Bayesian statistical decision ; Breast ; Breast - pathology ; Breast cancer ; Breast density classification ; Breast tissue ; computer-aided diagnostic systems ; Data mining ; Data systems ; Database Management Systems ; Diagnostic imaging ; Diagnòstic per la imatge ; Digital techniques ; Estadística bayesiana ; Female ; Hospitals ; Humans ; Image segmentation ; Imaging segmentation ; Imaging systems in medicine ; Imatgeria mèdica ; Imatges ; Life estimation ; Mama ; Mammography ; parenchymal patterns ; Processament ; Radiografia ; Radiografia mèdica ; Radiography ; Radiography, Medical ; Radiology ; Segmentació ; Tècniques digitals</subject><ispartof>IEEE journal of biomedical and health informatics, 2008-01, Vol.12 (1), p.55-65</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><rights>Tots els drets reservats info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c601t-7a9c203973948889b3715d3a9abfa95f33079486bd7c75826c3ab2224699689f3</citedby><cites>FETCH-LOGICAL-c601t-7a9c203973948889b3715d3a9abfa95f33079486bd7c75826c3ab2224699689f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4358897$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,4024,26974,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4358897$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18270037$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oliver, A.</creatorcontrib><creatorcontrib>Freixenet, J.</creatorcontrib><creatorcontrib>Marti, R.</creatorcontrib><creatorcontrib>Pont, J.</creatorcontrib><creatorcontrib>Perez, E.</creatorcontrib><creatorcontrib>Denton, E.R.E.</creatorcontrib><creatorcontrib>Zwiggelaar, R.</creatorcontrib><title>A Novel Breast Tissue Density Classification Methodology</title><title>IEEE journal of biomedical and health informatics</title><addtitle>TITB</addtitle><addtitle>IEEE Trans Inf Technol Biomed</addtitle><description>It has been shown that the accuracy of mammographic abnormality detection methods is strongly dependent on the breast tissue characteristics, where a dense breast drastically reduces detection sensitivity. In addition, breast tissue density is widely accepted to be an important risk indicator for the development of breast cancer. Here, we describe the development of an automatic breast tissue classification methodology, which can be summarized in a number of distinct steps: 1) the segmentation of the breast area into fatty versus dense mammographic tissue; 2) the extraction of morphological and texture features from the segmented breast areas; and 3) the use of a Bayesian combination of a number of classifiers. The evaluation, based on a large number of cases from two different mammographic data sets, shows a strong correlation ( and 0.67 for the two data sets) between automatic and expert-based Breast Imaging Reporting and Data System mammographic density assessment.</description><subject>Automation</subject><subject>Bayes Theorem</subject><subject>Bayesian methods</subject><subject>Bayesian statistical decision</subject><subject>Breast</subject><subject>Breast - pathology</subject><subject>Breast cancer</subject><subject>Breast density classification</subject><subject>Breast tissue</subject><subject>computer-aided diagnostic systems</subject><subject>Data mining</subject><subject>Data systems</subject><subject>Database Management Systems</subject><subject>Diagnostic imaging</subject><subject>Diagnòstic per la imatge</subject><subject>Digital techniques</subject><subject>Estadística bayesiana</subject><subject>Female</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Image segmentation</subject><subject>Imaging segmentation</subject><subject>Imaging systems in medicine</subject><subject>Imatgeria mèdica</subject><subject>Imatges</subject><subject>Life estimation</subject><subject>Mama</subject><subject>Mammography</subject><subject>parenchymal patterns</subject><subject>Processament</subject><subject>Radiografia</subject><subject>Radiografia mèdica</subject><subject>Radiography</subject><subject>Radiography, Medical</subject><subject>Radiology</subject><subject>Segmentació</subject><subject>Tècniques digitals</subject><issn>1089-7771</issn><issn>2168-2194</issn><issn>1558-0032</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><sourceid>XX2</sourceid><recordid>eNqFks2LFDEQxRtR3HX1LgjS7EFPPVZSSSo57o5fC6texnNIZ9KapWeyJt3C_PdmmMEFD84hJEX9XlG8vKZ5yWDBGJh3q5vV9YID0MIASiYeNedMSt0BIH9c36BNR0TsrHlWyh0AE5Lh0-aMaU6VofNGX7Vf0-8wttc5uDK1q1jKHNr3YVvitGuXoyslDtG7KaZt-yVMP9M6jenH7nnzZHBjCS-O90Xz_eOH1fJzd_vt083y6rbzCtjUkTOeAxpCI7TWpkdico3OuH5wRg6IQLWj-jV5kporj67nnAtljNJmwIuGHeb6Mnubgw-5LmOTiw_F_nAgbpFLBqJq3h409zn9mkOZ7CYWH8bRbUOai61mKZQc-ElSk-ICUOhKvvkvScC10fI0iEKgYkqdBDkoJlBSBS__Ae_SnLfVdasVp-qTMBWCo085lZLDYO9z3Li8swzsPix2Hxa7D4s9hKVKXh_nzv0mrB8Ex3RU4NUBiCGEv-26U_1Iwj9jcL4z</recordid><startdate>200801</startdate><enddate>200801</enddate><creator>Oliver, A.</creator><creator>Freixenet, J.</creator><creator>Marti, R.</creator><creator>Pont, J.</creator><creator>Perez, E.</creator><creator>Denton, E.R.E.</creator><creator>Zwiggelaar, R.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>XX2</scope></search><sort><creationdate>200801</creationdate><title>A Novel Breast Tissue Density Classification Methodology</title><author>Oliver, A. ; Freixenet, J. ; Marti, R. ; Pont, J. ; Perez, E. ; Denton, E.R.E. ; Zwiggelaar, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c601t-7a9c203973948889b3715d3a9abfa95f33079486bd7c75826c3ab2224699689f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Automation</topic><topic>Bayes Theorem</topic><topic>Bayesian methods</topic><topic>Bayesian statistical decision</topic><topic>Breast</topic><topic>Breast - pathology</topic><topic>Breast cancer</topic><topic>Breast density classification</topic><topic>Breast tissue</topic><topic>computer-aided diagnostic systems</topic><topic>Data mining</topic><topic>Data systems</topic><topic>Database Management Systems</topic><topic>Diagnostic imaging</topic><topic>Diagnòstic per la imatge</topic><topic>Digital techniques</topic><topic>Estadística bayesiana</topic><topic>Female</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Image segmentation</topic><topic>Imaging segmentation</topic><topic>Imaging systems in medicine</topic><topic>Imatgeria mèdica</topic><topic>Imatges</topic><topic>Life estimation</topic><topic>Mama</topic><topic>Mammography</topic><topic>parenchymal patterns</topic><topic>Processament</topic><topic>Radiografia</topic><topic>Radiografia mèdica</topic><topic>Radiography</topic><topic>Radiography, Medical</topic><topic>Radiology</topic><topic>Segmentació</topic><topic>Tècniques digitals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oliver, A.</creatorcontrib><creatorcontrib>Freixenet, J.</creatorcontrib><creatorcontrib>Marti, R.</creatorcontrib><creatorcontrib>Pont, J.</creatorcontrib><creatorcontrib>Perez, E.</creatorcontrib><creatorcontrib>Denton, E.R.E.</creatorcontrib><creatorcontrib>Zwiggelaar, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Recercat</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Oliver, A.</au><au>Freixenet, J.</au><au>Marti, R.</au><au>Pont, J.</au><au>Perez, E.</au><au>Denton, E.R.E.</au><au>Zwiggelaar, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Breast Tissue Density Classification Methodology</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>TITB</stitle><addtitle>IEEE Trans Inf Technol Biomed</addtitle><date>2008-01</date><risdate>2008</risdate><volume>12</volume><issue>1</issue><spage>55</spage><epage>65</epage><pages>55-65</pages><issn>1089-7771</issn><issn>2168-2194</issn><eissn>1558-0032</eissn><eissn>2168-2208</eissn><coden>ITIBFX</coden><abstract>It has been shown that the accuracy of mammographic abnormality detection methods is strongly dependent on the breast tissue characteristics, where a dense breast drastically reduces detection sensitivity. In addition, breast tissue density is widely accepted to be an important risk indicator for the development of breast cancer. Here, we describe the development of an automatic breast tissue classification methodology, which can be summarized in a number of distinct steps: 1) the segmentation of the breast area into fatty versus dense mammographic tissue; 2) the extraction of morphological and texture features from the segmented breast areas; and 3) the use of a Bayesian combination of a number of classifiers. The evaluation, based on a large number of cases from two different mammographic data sets, shows a strong correlation ( and 0.67 for the two data sets) between automatic and expert-based Breast Imaging Reporting and Data System mammographic density assessment.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>18270037</pmid><doi>10.1109/TITB.2007.903514</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-7771 |
ispartof | IEEE journal of biomedical and health informatics, 2008-01, Vol.12 (1), p.55-65 |
issn | 1089-7771 2168-2194 1558-0032 2168-2208 |
language | eng |
recordid | cdi_ieee_primary_4358897 |
source | IEEE Electronic Library (IEL) |
subjects | Automation Bayes Theorem Bayesian methods Bayesian statistical decision Breast Breast - pathology Breast cancer Breast density classification Breast tissue computer-aided diagnostic systems Data mining Data systems Database Management Systems Diagnostic imaging Diagnòstic per la imatge Digital techniques Estadística bayesiana Female Hospitals Humans Image segmentation Imaging segmentation Imaging systems in medicine Imatgeria mèdica Imatges Life estimation Mama Mammography parenchymal patterns Processament Radiografia Radiografia mèdica Radiography Radiography, Medical Radiology Segmentació Tècniques digitals |
title | A Novel Breast Tissue Density Classification Methodology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A43%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Breast%20Tissue%20Density%20Classification%20Methodology&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Oliver,%20A.&rft.date=2008-01&rft.volume=12&rft.issue=1&rft.spage=55&rft.epage=65&rft.pages=55-65&rft.issn=1089-7771&rft.eissn=1558-0032&rft.coden=ITIBFX&rft_id=info:doi/10.1109/TITB.2007.903514&rft_dat=%3Cproquest_RIE%3E876240348%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862796849&rft_id=info:pmid/18270037&rft_ieee_id=4358897&rfr_iscdi=true |