A Novel Breast Tissue Density Classification Methodology

It has been shown that the accuracy of mammographic abnormality detection methods is strongly dependent on the breast tissue characteristics, where a dense breast drastically reduces detection sensitivity. In addition, breast tissue density is widely accepted to be an important risk indicator for th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2008-01, Vol.12 (1), p.55-65
Hauptverfasser: Oliver, A., Freixenet, J., Marti, R., Pont, J., Perez, E., Denton, E.R.E., Zwiggelaar, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 65
container_issue 1
container_start_page 55
container_title IEEE journal of biomedical and health informatics
container_volume 12
creator Oliver, A.
Freixenet, J.
Marti, R.
Pont, J.
Perez, E.
Denton, E.R.E.
Zwiggelaar, R.
description It has been shown that the accuracy of mammographic abnormality detection methods is strongly dependent on the breast tissue characteristics, where a dense breast drastically reduces detection sensitivity. In addition, breast tissue density is widely accepted to be an important risk indicator for the development of breast cancer. Here, we describe the development of an automatic breast tissue classification methodology, which can be summarized in a number of distinct steps: 1) the segmentation of the breast area into fatty versus dense mammographic tissue; 2) the extraction of morphological and texture features from the segmented breast areas; and 3) the use of a Bayesian combination of a number of classifiers. The evaluation, based on a large number of cases from two different mammographic data sets, shows a strong correlation ( and 0.67 for the two data sets) between automatic and expert-based Breast Imaging Reporting and Data System mammographic density assessment.
doi_str_mv 10.1109/TITB.2007.903514
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4358897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4358897</ieee_id><sourcerecordid>876240348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c601t-7a9c203973948889b3715d3a9abfa95f33079486bd7c75826c3ab2224699689f3</originalsourceid><addsrcrecordid>eNqFks2LFDEQxRtR3HX1LgjS7EFPPVZSSSo57o5fC6texnNIZ9KapWeyJt3C_PdmmMEFD84hJEX9XlG8vKZ5yWDBGJh3q5vV9YID0MIASiYeNedMSt0BIH9c36BNR0TsrHlWyh0AE5Lh0-aMaU6VofNGX7Vf0-8wttc5uDK1q1jKHNr3YVvitGuXoyslDtG7KaZt-yVMP9M6jenH7nnzZHBjCS-O90Xz_eOH1fJzd_vt083y6rbzCtjUkTOeAxpCI7TWpkdico3OuH5wRg6IQLWj-jV5kporj67nnAtljNJmwIuGHeb6Mnubgw-5LmOTiw_F_nAgbpFLBqJq3h409zn9mkOZ7CYWH8bRbUOai61mKZQc-ElSk-ICUOhKvvkvScC10fI0iEKgYkqdBDkoJlBSBS__Ae_SnLfVdasVp-qTMBWCo085lZLDYO9z3Li8swzsPix2Hxa7D4s9hKVKXh_nzv0mrB8Ex3RU4NUBiCGEv-26U_1Iwj9jcL4z</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862796849</pqid></control><display><type>article</type><title>A Novel Breast Tissue Density Classification Methodology</title><source>IEEE Electronic Library (IEL)</source><creator>Oliver, A. ; Freixenet, J. ; Marti, R. ; Pont, J. ; Perez, E. ; Denton, E.R.E. ; Zwiggelaar, R.</creator><creatorcontrib>Oliver, A. ; Freixenet, J. ; Marti, R. ; Pont, J. ; Perez, E. ; Denton, E.R.E. ; Zwiggelaar, R.</creatorcontrib><description>It has been shown that the accuracy of mammographic abnormality detection methods is strongly dependent on the breast tissue characteristics, where a dense breast drastically reduces detection sensitivity. In addition, breast tissue density is widely accepted to be an important risk indicator for the development of breast cancer. Here, we describe the development of an automatic breast tissue classification methodology, which can be summarized in a number of distinct steps: 1) the segmentation of the breast area into fatty versus dense mammographic tissue; 2) the extraction of morphological and texture features from the segmented breast areas; and 3) the use of a Bayesian combination of a number of classifiers. The evaluation, based on a large number of cases from two different mammographic data sets, shows a strong correlation ( and 0.67 for the two data sets) between automatic and expert-based Breast Imaging Reporting and Data System mammographic density assessment.</description><identifier>ISSN: 1089-7771</identifier><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 1558-0032</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/TITB.2007.903514</identifier><identifier>PMID: 18270037</identifier><identifier>CODEN: ITIBFX</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Automation ; Bayes Theorem ; Bayesian methods ; Bayesian statistical decision ; Breast ; Breast - pathology ; Breast cancer ; Breast density classification ; Breast tissue ; computer-aided diagnostic systems ; Data mining ; Data systems ; Database Management Systems ; Diagnostic imaging ; Diagnòstic per la imatge ; Digital techniques ; Estadística bayesiana ; Female ; Hospitals ; Humans ; Image segmentation ; Imaging segmentation ; Imaging systems in medicine ; Imatgeria mèdica ; Imatges ; Life estimation ; Mama ; Mammography ; parenchymal patterns ; Processament ; Radiografia ; Radiografia mèdica ; Radiography ; Radiography, Medical ; Radiology ; Segmentació ; Tècniques digitals</subject><ispartof>IEEE journal of biomedical and health informatics, 2008-01, Vol.12 (1), p.55-65</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><rights>Tots els drets reservats info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c601t-7a9c203973948889b3715d3a9abfa95f33079486bd7c75826c3ab2224699689f3</citedby><cites>FETCH-LOGICAL-c601t-7a9c203973948889b3715d3a9abfa95f33079486bd7c75826c3ab2224699689f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4358897$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,4024,26974,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4358897$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18270037$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oliver, A.</creatorcontrib><creatorcontrib>Freixenet, J.</creatorcontrib><creatorcontrib>Marti, R.</creatorcontrib><creatorcontrib>Pont, J.</creatorcontrib><creatorcontrib>Perez, E.</creatorcontrib><creatorcontrib>Denton, E.R.E.</creatorcontrib><creatorcontrib>Zwiggelaar, R.</creatorcontrib><title>A Novel Breast Tissue Density Classification Methodology</title><title>IEEE journal of biomedical and health informatics</title><addtitle>TITB</addtitle><addtitle>IEEE Trans Inf Technol Biomed</addtitle><description>It has been shown that the accuracy of mammographic abnormality detection methods is strongly dependent on the breast tissue characteristics, where a dense breast drastically reduces detection sensitivity. In addition, breast tissue density is widely accepted to be an important risk indicator for the development of breast cancer. Here, we describe the development of an automatic breast tissue classification methodology, which can be summarized in a number of distinct steps: 1) the segmentation of the breast area into fatty versus dense mammographic tissue; 2) the extraction of morphological and texture features from the segmented breast areas; and 3) the use of a Bayesian combination of a number of classifiers. The evaluation, based on a large number of cases from two different mammographic data sets, shows a strong correlation ( and 0.67 for the two data sets) between automatic and expert-based Breast Imaging Reporting and Data System mammographic density assessment.</description><subject>Automation</subject><subject>Bayes Theorem</subject><subject>Bayesian methods</subject><subject>Bayesian statistical decision</subject><subject>Breast</subject><subject>Breast - pathology</subject><subject>Breast cancer</subject><subject>Breast density classification</subject><subject>Breast tissue</subject><subject>computer-aided diagnostic systems</subject><subject>Data mining</subject><subject>Data systems</subject><subject>Database Management Systems</subject><subject>Diagnostic imaging</subject><subject>Diagnòstic per la imatge</subject><subject>Digital techniques</subject><subject>Estadística bayesiana</subject><subject>Female</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Image segmentation</subject><subject>Imaging segmentation</subject><subject>Imaging systems in medicine</subject><subject>Imatgeria mèdica</subject><subject>Imatges</subject><subject>Life estimation</subject><subject>Mama</subject><subject>Mammography</subject><subject>parenchymal patterns</subject><subject>Processament</subject><subject>Radiografia</subject><subject>Radiografia mèdica</subject><subject>Radiography</subject><subject>Radiography, Medical</subject><subject>Radiology</subject><subject>Segmentació</subject><subject>Tècniques digitals</subject><issn>1089-7771</issn><issn>2168-2194</issn><issn>1558-0032</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><sourceid>XX2</sourceid><recordid>eNqFks2LFDEQxRtR3HX1LgjS7EFPPVZSSSo57o5fC6texnNIZ9KapWeyJt3C_PdmmMEFD84hJEX9XlG8vKZ5yWDBGJh3q5vV9YID0MIASiYeNedMSt0BIH9c36BNR0TsrHlWyh0AE5Lh0-aMaU6VofNGX7Vf0-8wttc5uDK1q1jKHNr3YVvitGuXoyslDtG7KaZt-yVMP9M6jenH7nnzZHBjCS-O90Xz_eOH1fJzd_vt083y6rbzCtjUkTOeAxpCI7TWpkdico3OuH5wRg6IQLWj-jV5kporj67nnAtljNJmwIuGHeb6Mnubgw-5LmOTiw_F_nAgbpFLBqJq3h409zn9mkOZ7CYWH8bRbUOai61mKZQc-ElSk-ICUOhKvvkvScC10fI0iEKgYkqdBDkoJlBSBS__Ae_SnLfVdasVp-qTMBWCo085lZLDYO9z3Li8swzsPix2Hxa7D4s9hKVKXh_nzv0mrB8Ex3RU4NUBiCGEv-26U_1Iwj9jcL4z</recordid><startdate>200801</startdate><enddate>200801</enddate><creator>Oliver, A.</creator><creator>Freixenet, J.</creator><creator>Marti, R.</creator><creator>Pont, J.</creator><creator>Perez, E.</creator><creator>Denton, E.R.E.</creator><creator>Zwiggelaar, R.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>XX2</scope></search><sort><creationdate>200801</creationdate><title>A Novel Breast Tissue Density Classification Methodology</title><author>Oliver, A. ; Freixenet, J. ; Marti, R. ; Pont, J. ; Perez, E. ; Denton, E.R.E. ; Zwiggelaar, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c601t-7a9c203973948889b3715d3a9abfa95f33079486bd7c75826c3ab2224699689f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Automation</topic><topic>Bayes Theorem</topic><topic>Bayesian methods</topic><topic>Bayesian statistical decision</topic><topic>Breast</topic><topic>Breast - pathology</topic><topic>Breast cancer</topic><topic>Breast density classification</topic><topic>Breast tissue</topic><topic>computer-aided diagnostic systems</topic><topic>Data mining</topic><topic>Data systems</topic><topic>Database Management Systems</topic><topic>Diagnostic imaging</topic><topic>Diagnòstic per la imatge</topic><topic>Digital techniques</topic><topic>Estadística bayesiana</topic><topic>Female</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Image segmentation</topic><topic>Imaging segmentation</topic><topic>Imaging systems in medicine</topic><topic>Imatgeria mèdica</topic><topic>Imatges</topic><topic>Life estimation</topic><topic>Mama</topic><topic>Mammography</topic><topic>parenchymal patterns</topic><topic>Processament</topic><topic>Radiografia</topic><topic>Radiografia mèdica</topic><topic>Radiography</topic><topic>Radiography, Medical</topic><topic>Radiology</topic><topic>Segmentació</topic><topic>Tècniques digitals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oliver, A.</creatorcontrib><creatorcontrib>Freixenet, J.</creatorcontrib><creatorcontrib>Marti, R.</creatorcontrib><creatorcontrib>Pont, J.</creatorcontrib><creatorcontrib>Perez, E.</creatorcontrib><creatorcontrib>Denton, E.R.E.</creatorcontrib><creatorcontrib>Zwiggelaar, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Recercat</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Oliver, A.</au><au>Freixenet, J.</au><au>Marti, R.</au><au>Pont, J.</au><au>Perez, E.</au><au>Denton, E.R.E.</au><au>Zwiggelaar, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Breast Tissue Density Classification Methodology</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>TITB</stitle><addtitle>IEEE Trans Inf Technol Biomed</addtitle><date>2008-01</date><risdate>2008</risdate><volume>12</volume><issue>1</issue><spage>55</spage><epage>65</epage><pages>55-65</pages><issn>1089-7771</issn><issn>2168-2194</issn><eissn>1558-0032</eissn><eissn>2168-2208</eissn><coden>ITIBFX</coden><abstract>It has been shown that the accuracy of mammographic abnormality detection methods is strongly dependent on the breast tissue characteristics, where a dense breast drastically reduces detection sensitivity. In addition, breast tissue density is widely accepted to be an important risk indicator for the development of breast cancer. Here, we describe the development of an automatic breast tissue classification methodology, which can be summarized in a number of distinct steps: 1) the segmentation of the breast area into fatty versus dense mammographic tissue; 2) the extraction of morphological and texture features from the segmented breast areas; and 3) the use of a Bayesian combination of a number of classifiers. The evaluation, based on a large number of cases from two different mammographic data sets, shows a strong correlation ( and 0.67 for the two data sets) between automatic and expert-based Breast Imaging Reporting and Data System mammographic density assessment.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>18270037</pmid><doi>10.1109/TITB.2007.903514</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-7771
ispartof IEEE journal of biomedical and health informatics, 2008-01, Vol.12 (1), p.55-65
issn 1089-7771
2168-2194
1558-0032
2168-2208
language eng
recordid cdi_ieee_primary_4358897
source IEEE Electronic Library (IEL)
subjects Automation
Bayes Theorem
Bayesian methods
Bayesian statistical decision
Breast
Breast - pathology
Breast cancer
Breast density classification
Breast tissue
computer-aided diagnostic systems
Data mining
Data systems
Database Management Systems
Diagnostic imaging
Diagnòstic per la imatge
Digital techniques
Estadística bayesiana
Female
Hospitals
Humans
Image segmentation
Imaging segmentation
Imaging systems in medicine
Imatgeria mèdica
Imatges
Life estimation
Mama
Mammography
parenchymal patterns
Processament
Radiografia
Radiografia mèdica
Radiography
Radiography, Medical
Radiology
Segmentació
Tècniques digitals
title A Novel Breast Tissue Density Classification Methodology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A43%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Breast%20Tissue%20Density%20Classification%20Methodology&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Oliver,%20A.&rft.date=2008-01&rft.volume=12&rft.issue=1&rft.spage=55&rft.epage=65&rft.pages=55-65&rft.issn=1089-7771&rft.eissn=1558-0032&rft.coden=ITIBFX&rft_id=info:doi/10.1109/TITB.2007.903514&rft_dat=%3Cproquest_RIE%3E876240348%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862796849&rft_id=info:pmid/18270037&rft_ieee_id=4358897&rfr_iscdi=true