Fast brain MRI segmentation based on two-dimensional survival exponential entropy and particle swarm optimization
In this paper, an MRI image segmentation method based on two-dimensional survival exponential entropy (2DSEE) and particle swarm optimization (PSO) is proposed. The 2DSEE technique does not consider only the cumulative distribution of the gray level information but also takes advantage of the spatia...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5566 |
---|---|
container_issue | |
container_start_page | 5563 |
container_title | |
container_volume | 2007 |
creator | Nakib, A. Roman, S. Oulhadj, H. Siarry, P. |
description | In this paper, an MRI image segmentation method based on two-dimensional survival exponential entropy (2DSEE) and particle swarm optimization (PSO) is proposed. The 2DSEE technique does not consider only the cumulative distribution of the gray level information but also takes advantage of the spatial information using the 2D-histogram. The problem with this method is its time-consuming computation that is an obstacle in real time applications for instance. We propose to use PSO algorithm, that was proved very efficient for non convex and combinatorial optimization. The experiments on segmentation of MRI images proved that the proposed method can achieve a satisfactory segmentation with a low computation cost. |
doi_str_mv | 10.1109/IEMBS.2007.4353607 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>hal_6IE</sourceid><recordid>TN_cdi_ieee_primary_4353607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4353607</ieee_id><sourcerecordid>oai_HAL_hal_01692514v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h335t-b1461c1f4921bbd4115d9eecbc2d617d1d388b0b0ed4ee2344702cf6afd5fb13</originalsourceid><addsrcrecordid>eNpVkU1PAjEQhutXhCB_QBPTq4fFzra77R6RgJBgTJSDN9Juu1LDfrhdQPz1FkESe-k78zyZZFqEroH0AEhyPxk-Pbz2QkJ4j9GIxoSfoG7CBbCQMcKFIKeoDVEkAhZDdPaPcXruGUlYEAv-1kJd5z6IPzTxWFyiFghfhJy20edIugarWtoCP71MsDPvuSka2diywEo6o7EPzaYMtPXA-bZcYreq13btg_mqysL7dpeLpi6rLZaFxpWsG5suDXYbWee4rBqb2-_fqVfoIpNLZ7qHu4Nmo-FsMA6mz4-TQX8aLCiNmkCB3yuFjCUhKKUZQKQTY1KVhjoGrkFTIRRRxGhmTEgZ4yRMs1hmOsoU0A66249dyOW8qm0u6-28lHY-7k_nux6BOAkjYOude7t3q5XKjT7qf8_khZu9YI0xR3z4F_oDfGx77g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fast brain MRI segmentation based on two-dimensional survival exponential entropy and particle swarm optimization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Nakib, A. ; Roman, S. ; Oulhadj, H. ; Siarry, P.</creator><creatorcontrib>Nakib, A. ; Roman, S. ; Oulhadj, H. ; Siarry, P.</creatorcontrib><description>In this paper, an MRI image segmentation method based on two-dimensional survival exponential entropy (2DSEE) and particle swarm optimization (PSO) is proposed. The 2DSEE technique does not consider only the cumulative distribution of the gray level information but also takes advantage of the spatial information using the 2D-histogram. The problem with this method is its time-consuming computation that is an obstacle in real time applications for instance. We propose to use PSO algorithm, that was proved very efficient for non convex and combinatorial optimization. The experiments on segmentation of MRI images proved that the proposed method can achieve a satisfactory segmentation with a low computation cost.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>ISBN: 9781424407873</identifier><identifier>ISBN: 1424407877</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 9781424407880</identifier><identifier>EISBN: 1424407885</identifier><identifier>DOI: 10.1109/IEMBS.2007.4353607</identifier><identifier>PMID: 18003273</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial Intelligence ; Brain - anatomy & histology ; Computational efficiency ; Computer Science ; Entropy ; Histograms ; Humans ; Image analysis ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image segmentation ; Lesions ; Magnetic analysis ; Magnetic resonance ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Medical Imaging ; Particle swarm optimization ; Pattern Recognition, Automated - methods ; Reproducibility of Results ; Sensitivity and Specificity</subject><ispartof>2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, Vol.2007, p.5563-5566</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9620-9324</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4353607$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,883,2054,27914,54909</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4353607$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18003273$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01692514$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Nakib, A.</creatorcontrib><creatorcontrib>Roman, S.</creatorcontrib><creatorcontrib>Oulhadj, H.</creatorcontrib><creatorcontrib>Siarry, P.</creatorcontrib><title>Fast brain MRI segmentation based on two-dimensional survival exponential entropy and particle swarm optimization</title><title>2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>IEMBS</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>In this paper, an MRI image segmentation method based on two-dimensional survival exponential entropy (2DSEE) and particle swarm optimization (PSO) is proposed. The 2DSEE technique does not consider only the cumulative distribution of the gray level information but also takes advantage of the spatial information using the 2D-histogram. The problem with this method is its time-consuming computation that is an obstacle in real time applications for instance. We propose to use PSO algorithm, that was proved very efficient for non convex and combinatorial optimization. The experiments on segmentation of MRI images proved that the proposed method can achieve a satisfactory segmentation with a low computation cost.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Brain - anatomy & histology</subject><subject>Computational efficiency</subject><subject>Computer Science</subject><subject>Entropy</subject><subject>Histograms</subject><subject>Humans</subject><subject>Image analysis</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Lesions</subject><subject>Magnetic analysis</subject><subject>Magnetic resonance</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medical Imaging</subject><subject>Particle swarm optimization</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>9781424407873</isbn><isbn>1424407877</isbn><isbn>9781424407880</isbn><isbn>1424407885</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpVkU1PAjEQhutXhCB_QBPTq4fFzra77R6RgJBgTJSDN9Juu1LDfrhdQPz1FkESe-k78zyZZFqEroH0AEhyPxk-Pbz2QkJ4j9GIxoSfoG7CBbCQMcKFIKeoDVEkAhZDdPaPcXruGUlYEAv-1kJd5z6IPzTxWFyiFghfhJy20edIugarWtoCP71MsDPvuSka2diywEo6o7EPzaYMtPXA-bZcYreq13btg_mqysL7dpeLpi6rLZaFxpWsG5suDXYbWee4rBqb2-_fqVfoIpNLZ7qHu4Nmo-FsMA6mz4-TQX8aLCiNmkCB3yuFjCUhKKUZQKQTY1KVhjoGrkFTIRRRxGhmTEgZ4yRMs1hmOsoU0A66249dyOW8qm0u6-28lHY-7k_nux6BOAkjYOude7t3q5XKjT7qf8_khZu9YI0xR3z4F_oDfGx77g</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>Nakib, A.</creator><creator>Roman, S.</creator><creator>Oulhadj, H.</creator><creator>Siarry, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9620-9324</orcidid></search><sort><creationdate>20070101</creationdate><title>Fast brain MRI segmentation based on two-dimensional survival exponential entropy and particle swarm optimization</title><author>Nakib, A. ; Roman, S. ; Oulhadj, H. ; Siarry, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h335t-b1461c1f4921bbd4115d9eecbc2d617d1d388b0b0ed4ee2344702cf6afd5fb13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Brain - anatomy & histology</topic><topic>Computational efficiency</topic><topic>Computer Science</topic><topic>Entropy</topic><topic>Histograms</topic><topic>Humans</topic><topic>Image analysis</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Lesions</topic><topic>Magnetic analysis</topic><topic>Magnetic resonance</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medical Imaging</topic><topic>Particle swarm optimization</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><toplevel>online_resources</toplevel><creatorcontrib>Nakib, A.</creatorcontrib><creatorcontrib>Roman, S.</creatorcontrib><creatorcontrib>Oulhadj, H.</creatorcontrib><creatorcontrib>Siarry, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nakib, A.</au><au>Roman, S.</au><au>Oulhadj, H.</au><au>Siarry, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fast brain MRI segmentation based on two-dimensional survival exponential entropy and particle swarm optimization</atitle><btitle>2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society</btitle><stitle>IEMBS</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2007-01-01</date><risdate>2007</risdate><volume>2007</volume><spage>5563</spage><epage>5566</epage><pages>5563-5566</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><isbn>9781424407873</isbn><isbn>1424407877</isbn><eisbn>9781424407880</eisbn><eisbn>1424407885</eisbn><abstract>In this paper, an MRI image segmentation method based on two-dimensional survival exponential entropy (2DSEE) and particle swarm optimization (PSO) is proposed. The 2DSEE technique does not consider only the cumulative distribution of the gray level information but also takes advantage of the spatial information using the 2D-histogram. The problem with this method is its time-consuming computation that is an obstacle in real time applications for instance. We propose to use PSO algorithm, that was proved very efficient for non convex and combinatorial optimization. The experiments on segmentation of MRI images proved that the proposed method can achieve a satisfactory segmentation with a low computation cost.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>18003273</pmid><doi>10.1109/IEMBS.2007.4353607</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-9620-9324</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1094-687X |
ispartof | 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, Vol.2007, p.5563-5566 |
issn | 1094-687X 1557-170X 1558-4615 |
language | eng |
recordid | cdi_ieee_primary_4353607 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithms Artificial Intelligence Brain - anatomy & histology Computational efficiency Computer Science Entropy Histograms Humans Image analysis Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Image segmentation Lesions Magnetic analysis Magnetic resonance Magnetic resonance imaging Magnetic Resonance Imaging - methods Medical Imaging Particle swarm optimization Pattern Recognition, Automated - methods Reproducibility of Results Sensitivity and Specificity |
title | Fast brain MRI segmentation based on two-dimensional survival exponential entropy and particle swarm optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A51%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fast%20brain%20MRI%20segmentation%20based%20on%20two-dimensional%20survival%20exponential%20entropy%20and%20particle%20swarm%20optimization&rft.btitle=2007%2029th%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Nakib,%20A.&rft.date=2007-01-01&rft.volume=2007&rft.spage=5563&rft.epage=5566&rft.pages=5563-5566&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=9781424407873&rft.isbn_list=1424407877&rft_id=info:doi/10.1109/IEMBS.2007.4353607&rft_dat=%3Chal_6IE%3Eoai_HAL_hal_01692514v1%3C/hal_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424407880&rft.eisbn_list=1424407885&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/18003273&rft_ieee_id=4353607&rfr_iscdi=true |