Fast brain MRI segmentation based on two-dimensional survival exponential entropy and particle swarm optimization

In this paper, an MRI image segmentation method based on two-dimensional survival exponential entropy (2DSEE) and particle swarm optimization (PSO) is proposed. The 2DSEE technique does not consider only the cumulative distribution of the gray level information but also takes advantage of the spatia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nakib, A., Roman, S., Oulhadj, H., Siarry, P.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5566
container_issue
container_start_page 5563
container_title
container_volume 2007
creator Nakib, A.
Roman, S.
Oulhadj, H.
Siarry, P.
description In this paper, an MRI image segmentation method based on two-dimensional survival exponential entropy (2DSEE) and particle swarm optimization (PSO) is proposed. The 2DSEE technique does not consider only the cumulative distribution of the gray level information but also takes advantage of the spatial information using the 2D-histogram. The problem with this method is its time-consuming computation that is an obstacle in real time applications for instance. We propose to use PSO algorithm, that was proved very efficient for non convex and combinatorial optimization. The experiments on segmentation of MRI images proved that the proposed method can achieve a satisfactory segmentation with a low computation cost.
doi_str_mv 10.1109/IEMBS.2007.4353607
format Conference Proceeding
fullrecord <record><control><sourceid>hal_6IE</sourceid><recordid>TN_cdi_ieee_primary_4353607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4353607</ieee_id><sourcerecordid>oai_HAL_hal_01692514v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h335t-b1461c1f4921bbd4115d9eecbc2d617d1d388b0b0ed4ee2344702cf6afd5fb13</originalsourceid><addsrcrecordid>eNpVkU1PAjEQhutXhCB_QBPTq4fFzra77R6RgJBgTJSDN9Juu1LDfrhdQPz1FkESe-k78zyZZFqEroH0AEhyPxk-Pbz2QkJ4j9GIxoSfoG7CBbCQMcKFIKeoDVEkAhZDdPaPcXruGUlYEAv-1kJd5z6IPzTxWFyiFghfhJy20edIugarWtoCP71MsDPvuSka2diywEo6o7EPzaYMtPXA-bZcYreq13btg_mqysL7dpeLpi6rLZaFxpWsG5suDXYbWee4rBqb2-_fqVfoIpNLZ7qHu4Nmo-FsMA6mz4-TQX8aLCiNmkCB3yuFjCUhKKUZQKQTY1KVhjoGrkFTIRRRxGhmTEgZ4yRMs1hmOsoU0A66249dyOW8qm0u6-28lHY-7k_nux6BOAkjYOude7t3q5XKjT7qf8_khZu9YI0xR3z4F_oDfGx77g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fast brain MRI segmentation based on two-dimensional survival exponential entropy and particle swarm optimization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Nakib, A. ; Roman, S. ; Oulhadj, H. ; Siarry, P.</creator><creatorcontrib>Nakib, A. ; Roman, S. ; Oulhadj, H. ; Siarry, P.</creatorcontrib><description>In this paper, an MRI image segmentation method based on two-dimensional survival exponential entropy (2DSEE) and particle swarm optimization (PSO) is proposed. The 2DSEE technique does not consider only the cumulative distribution of the gray level information but also takes advantage of the spatial information using the 2D-histogram. The problem with this method is its time-consuming computation that is an obstacle in real time applications for instance. We propose to use PSO algorithm, that was proved very efficient for non convex and combinatorial optimization. The experiments on segmentation of MRI images proved that the proposed method can achieve a satisfactory segmentation with a low computation cost.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>ISBN: 9781424407873</identifier><identifier>ISBN: 1424407877</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 9781424407880</identifier><identifier>EISBN: 1424407885</identifier><identifier>DOI: 10.1109/IEMBS.2007.4353607</identifier><identifier>PMID: 18003273</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial Intelligence ; Brain - anatomy &amp; histology ; Computational efficiency ; Computer Science ; Entropy ; Histograms ; Humans ; Image analysis ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image segmentation ; Lesions ; Magnetic analysis ; Magnetic resonance ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Medical Imaging ; Particle swarm optimization ; Pattern Recognition, Automated - methods ; Reproducibility of Results ; Sensitivity and Specificity</subject><ispartof>2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, Vol.2007, p.5563-5566</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9620-9324</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4353607$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,883,2054,27914,54909</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4353607$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18003273$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01692514$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Nakib, A.</creatorcontrib><creatorcontrib>Roman, S.</creatorcontrib><creatorcontrib>Oulhadj, H.</creatorcontrib><creatorcontrib>Siarry, P.</creatorcontrib><title>Fast brain MRI segmentation based on two-dimensional survival exponential entropy and particle swarm optimization</title><title>2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>IEMBS</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>In this paper, an MRI image segmentation method based on two-dimensional survival exponential entropy (2DSEE) and particle swarm optimization (PSO) is proposed. The 2DSEE technique does not consider only the cumulative distribution of the gray level information but also takes advantage of the spatial information using the 2D-histogram. The problem with this method is its time-consuming computation that is an obstacle in real time applications for instance. We propose to use PSO algorithm, that was proved very efficient for non convex and combinatorial optimization. The experiments on segmentation of MRI images proved that the proposed method can achieve a satisfactory segmentation with a low computation cost.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Brain - anatomy &amp; histology</subject><subject>Computational efficiency</subject><subject>Computer Science</subject><subject>Entropy</subject><subject>Histograms</subject><subject>Humans</subject><subject>Image analysis</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Lesions</subject><subject>Magnetic analysis</subject><subject>Magnetic resonance</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medical Imaging</subject><subject>Particle swarm optimization</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>9781424407873</isbn><isbn>1424407877</isbn><isbn>9781424407880</isbn><isbn>1424407885</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpVkU1PAjEQhutXhCB_QBPTq4fFzra77R6RgJBgTJSDN9Juu1LDfrhdQPz1FkESe-k78zyZZFqEroH0AEhyPxk-Pbz2QkJ4j9GIxoSfoG7CBbCQMcKFIKeoDVEkAhZDdPaPcXruGUlYEAv-1kJd5z6IPzTxWFyiFghfhJy20edIugarWtoCP71MsDPvuSka2diywEo6o7EPzaYMtPXA-bZcYreq13btg_mqysL7dpeLpi6rLZaFxpWsG5suDXYbWee4rBqb2-_fqVfoIpNLZ7qHu4Nmo-FsMA6mz4-TQX8aLCiNmkCB3yuFjCUhKKUZQKQTY1KVhjoGrkFTIRRRxGhmTEgZ4yRMs1hmOsoU0A66249dyOW8qm0u6-28lHY-7k_nux6BOAkjYOude7t3q5XKjT7qf8_khZu9YI0xR3z4F_oDfGx77g</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>Nakib, A.</creator><creator>Roman, S.</creator><creator>Oulhadj, H.</creator><creator>Siarry, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9620-9324</orcidid></search><sort><creationdate>20070101</creationdate><title>Fast brain MRI segmentation based on two-dimensional survival exponential entropy and particle swarm optimization</title><author>Nakib, A. ; Roman, S. ; Oulhadj, H. ; Siarry, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h335t-b1461c1f4921bbd4115d9eecbc2d617d1d388b0b0ed4ee2344702cf6afd5fb13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Brain - anatomy &amp; histology</topic><topic>Computational efficiency</topic><topic>Computer Science</topic><topic>Entropy</topic><topic>Histograms</topic><topic>Humans</topic><topic>Image analysis</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Lesions</topic><topic>Magnetic analysis</topic><topic>Magnetic resonance</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medical Imaging</topic><topic>Particle swarm optimization</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><toplevel>online_resources</toplevel><creatorcontrib>Nakib, A.</creatorcontrib><creatorcontrib>Roman, S.</creatorcontrib><creatorcontrib>Oulhadj, H.</creatorcontrib><creatorcontrib>Siarry, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nakib, A.</au><au>Roman, S.</au><au>Oulhadj, H.</au><au>Siarry, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fast brain MRI segmentation based on two-dimensional survival exponential entropy and particle swarm optimization</atitle><btitle>2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society</btitle><stitle>IEMBS</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2007-01-01</date><risdate>2007</risdate><volume>2007</volume><spage>5563</spage><epage>5566</epage><pages>5563-5566</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><isbn>9781424407873</isbn><isbn>1424407877</isbn><eisbn>9781424407880</eisbn><eisbn>1424407885</eisbn><abstract>In this paper, an MRI image segmentation method based on two-dimensional survival exponential entropy (2DSEE) and particle swarm optimization (PSO) is proposed. The 2DSEE technique does not consider only the cumulative distribution of the gray level information but also takes advantage of the spatial information using the 2D-histogram. The problem with this method is its time-consuming computation that is an obstacle in real time applications for instance. We propose to use PSO algorithm, that was proved very efficient for non convex and combinatorial optimization. The experiments on segmentation of MRI images proved that the proposed method can achieve a satisfactory segmentation with a low computation cost.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>18003273</pmid><doi>10.1109/IEMBS.2007.4353607</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-9620-9324</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1094-687X
ispartof 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, Vol.2007, p.5563-5566
issn 1094-687X
1557-170X
1558-4615
language eng
recordid cdi_ieee_primary_4353607
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithms
Artificial Intelligence
Brain - anatomy & histology
Computational efficiency
Computer Science
Entropy
Histograms
Humans
Image analysis
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image segmentation
Lesions
Magnetic analysis
Magnetic resonance
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medical Imaging
Particle swarm optimization
Pattern Recognition, Automated - methods
Reproducibility of Results
Sensitivity and Specificity
title Fast brain MRI segmentation based on two-dimensional survival exponential entropy and particle swarm optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A51%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fast%20brain%20MRI%20segmentation%20based%20on%20two-dimensional%20survival%20exponential%20entropy%20and%20particle%20swarm%20optimization&rft.btitle=2007%2029th%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Nakib,%20A.&rft.date=2007-01-01&rft.volume=2007&rft.spage=5563&rft.epage=5566&rft.pages=5563-5566&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=9781424407873&rft.isbn_list=1424407877&rft_id=info:doi/10.1109/IEMBS.2007.4353607&rft_dat=%3Chal_6IE%3Eoai_HAL_hal_01692514v1%3C/hal_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424407880&rft.eisbn_list=1424407885&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/18003273&rft_ieee_id=4353607&rfr_iscdi=true