Manifold Learning Applied on EEG Signal of the Epileptic Patients for Detection of Normal and Pre-Seizure States

In this paper, several manifold learning (ML) techniques for dimension reduction of EEG feature vectors are introduced and applied on set of epileptic EEG signals. These include principal component analysis (PCA), multidimensional scaling (MDS), isometric mapping (ISOMAP) and locally linear embeddin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ataee, P., Yazdani, A., Setarehdan, S.K., Noubari, H.A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5492
container_issue
container_start_page 5489
container_title
container_volume 2007
creator Ataee, P.
Yazdani, A.
Setarehdan, S.K.
Noubari, H.A.
description In this paper, several manifold learning (ML) techniques for dimension reduction of EEG feature vectors are introduced and applied on set of epileptic EEG signals. These include principal component analysis (PCA), multidimensional scaling (MDS), isometric mapping (ISOMAP) and locally linear embedding (LLE). While EEG signals of epileptic patients contain necessary information with regards to the various brain states of epileptic patients, for extraction of useful information in the EEG signals and for detection, often construction of high-dimensional feature vectors is utilized. Analysis of such high-dimensional feature vectors are complex and time consuming. This paper deals with dimension reduction of the extracted feature vectors and comparative analysis of the performance of several manifold learning techniques as applied on EEG signals of epileptic patients.
doi_str_mv 10.1109/IEMBS.2007.4353588
format Conference Proceeding
fullrecord <record><control><sourceid>pubmed_6IE</sourceid><recordid>TN_cdi_ieee_primary_4353588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4353588</ieee_id><sourcerecordid>18003254</sourcerecordid><originalsourceid>FETCH-LOGICAL-i301t-94fa672affd08993c8796034fa59237a6bf9f2054c84c76a872f75bbb8250bdf3</originalsourceid><addsrcrecordid>eNpVkN1Kw0AQhdc_bKl9AQXZF0jd7E9297LWWAutFqLgXdkks3UlTUKyvdCnd6FVcG6Gme-cAzMIXcdkEsdE3y3S1X02oYTICWeCCaVO0FhLFXPKOZFKkVM0jIVQEU9icfaPSXYeGNE8SpR8H6Bx33-SUEwHrC7RIFZhoIIPUbsytbNNVeIlmK529RZP27ZyUOKmxmk6x5nb1qbCjcX-A3Daugpa7wq8Nt5B7Xtsmw4_gIfCu2AJuuem2wWHqUu87iDKwH3vO8CZNx76K3RhTdXD-NhH6O0xfZ09RcuX-WI2XUaOkdhHmluTSGqsLYnSmhVK6oSwsBWaMmmS3GpLieCF4oVMjJLUSpHnuaKC5KVlI3R7yG33-Q7KTdu5nem-Nr-nB8HNQeAA4A8ff81-AKjmatg</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Manifold Learning Applied on EEG Signal of the Epileptic Patients for Detection of Normal and Pre-Seizure States</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ataee, P. ; Yazdani, A. ; Setarehdan, S.K. ; Noubari, H.A.</creator><creatorcontrib>Ataee, P. ; Yazdani, A. ; Setarehdan, S.K. ; Noubari, H.A.</creatorcontrib><description>In this paper, several manifold learning (ML) techniques for dimension reduction of EEG feature vectors are introduced and applied on set of epileptic EEG signals. These include principal component analysis (PCA), multidimensional scaling (MDS), isometric mapping (ISOMAP) and locally linear embedding (LLE). While EEG signals of epileptic patients contain necessary information with regards to the various brain states of epileptic patients, for extraction of useful information in the EEG signals and for detection, often construction of high-dimensional feature vectors is utilized. Analysis of such high-dimensional feature vectors are complex and time consuming. This paper deals with dimension reduction of the extracted feature vectors and comparative analysis of the performance of several manifold learning techniques as applied on EEG signals of epileptic patients.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>ISBN: 9781424407873</identifier><identifier>ISBN: 1424407877</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 9781424407880</identifier><identifier>EISBN: 1424407885</identifier><identifier>DOI: 10.1109/IEMBS.2007.4353588</identifier><identifier>PMID: 18003254</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial Intelligence ; Data mining ; Diagnosis, Computer-Assisted - methods ; Electroencephalography ; Electroencephalography - methods ; Epilepsy ; Feature extraction ; Humans ; Multidimensional systems ; Pattern Recognition, Automated - methods ; Performance analysis ; Principal component analysis ; Reference Values ; Reproducibility of Results ; Seizures - diagnosis ; Sensitivity and Specificity ; Signal analysis ; Signal detection ; Vectors</subject><ispartof>2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, Vol.2007, p.5489-5492</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4353588$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4353588$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18003254$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ataee, P.</creatorcontrib><creatorcontrib>Yazdani, A.</creatorcontrib><creatorcontrib>Setarehdan, S.K.</creatorcontrib><creatorcontrib>Noubari, H.A.</creatorcontrib><title>Manifold Learning Applied on EEG Signal of the Epileptic Patients for Detection of Normal and Pre-Seizure States</title><title>2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>IEMBS</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>In this paper, several manifold learning (ML) techniques for dimension reduction of EEG feature vectors are introduced and applied on set of epileptic EEG signals. These include principal component analysis (PCA), multidimensional scaling (MDS), isometric mapping (ISOMAP) and locally linear embedding (LLE). While EEG signals of epileptic patients contain necessary information with regards to the various brain states of epileptic patients, for extraction of useful information in the EEG signals and for detection, often construction of high-dimensional feature vectors is utilized. Analysis of such high-dimensional feature vectors are complex and time consuming. This paper deals with dimension reduction of the extracted feature vectors and comparative analysis of the performance of several manifold learning techniques as applied on EEG signals of epileptic patients.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Data mining</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Epilepsy</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>Multidimensional systems</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Performance analysis</subject><subject>Principal component analysis</subject><subject>Reference Values</subject><subject>Reproducibility of Results</subject><subject>Seizures - diagnosis</subject><subject>Sensitivity and Specificity</subject><subject>Signal analysis</subject><subject>Signal detection</subject><subject>Vectors</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>9781424407873</isbn><isbn>1424407877</isbn><isbn>9781424407880</isbn><isbn>1424407885</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpVkN1Kw0AQhdc_bKl9AQXZF0jd7E9297LWWAutFqLgXdkks3UlTUKyvdCnd6FVcG6Gme-cAzMIXcdkEsdE3y3S1X02oYTICWeCCaVO0FhLFXPKOZFKkVM0jIVQEU9icfaPSXYeGNE8SpR8H6Bx33-SUEwHrC7RIFZhoIIPUbsytbNNVeIlmK529RZP27ZyUOKmxmk6x5nb1qbCjcX-A3Daugpa7wq8Nt5B7Xtsmw4_gIfCu2AJuuem2wWHqUu87iDKwH3vO8CZNx76K3RhTdXD-NhH6O0xfZ09RcuX-WI2XUaOkdhHmluTSGqsLYnSmhVK6oSwsBWaMmmS3GpLieCF4oVMjJLUSpHnuaKC5KVlI3R7yG33-Q7KTdu5nem-Nr-nB8HNQeAA4A8ff81-AKjmatg</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>Ataee, P.</creator><creator>Yazdani, A.</creator><creator>Setarehdan, S.K.</creator><creator>Noubari, H.A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20070101</creationdate><title>Manifold Learning Applied on EEG Signal of the Epileptic Patients for Detection of Normal and Pre-Seizure States</title><author>Ataee, P. ; Yazdani, A. ; Setarehdan, S.K. ; Noubari, H.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i301t-94fa672affd08993c8796034fa59237a6bf9f2054c84c76a872f75bbb8250bdf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Data mining</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Epilepsy</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>Multidimensional systems</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Performance analysis</topic><topic>Principal component analysis</topic><topic>Reference Values</topic><topic>Reproducibility of Results</topic><topic>Seizures - diagnosis</topic><topic>Sensitivity and Specificity</topic><topic>Signal analysis</topic><topic>Signal detection</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Ataee, P.</creatorcontrib><creatorcontrib>Yazdani, A.</creatorcontrib><creatorcontrib>Setarehdan, S.K.</creatorcontrib><creatorcontrib>Noubari, H.A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ataee, P.</au><au>Yazdani, A.</au><au>Setarehdan, S.K.</au><au>Noubari, H.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Manifold Learning Applied on EEG Signal of the Epileptic Patients for Detection of Normal and Pre-Seizure States</atitle><btitle>2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society</btitle><stitle>IEMBS</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2007-01-01</date><risdate>2007</risdate><volume>2007</volume><spage>5489</spage><epage>5492</epage><pages>5489-5492</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><isbn>9781424407873</isbn><isbn>1424407877</isbn><eisbn>9781424407880</eisbn><eisbn>1424407885</eisbn><abstract>In this paper, several manifold learning (ML) techniques for dimension reduction of EEG feature vectors are introduced and applied on set of epileptic EEG signals. These include principal component analysis (PCA), multidimensional scaling (MDS), isometric mapping (ISOMAP) and locally linear embedding (LLE). While EEG signals of epileptic patients contain necessary information with regards to the various brain states of epileptic patients, for extraction of useful information in the EEG signals and for detection, often construction of high-dimensional feature vectors is utilized. Analysis of such high-dimensional feature vectors are complex and time consuming. This paper deals with dimension reduction of the extracted feature vectors and comparative analysis of the performance of several manifold learning techniques as applied on EEG signals of epileptic patients.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>18003254</pmid><doi>10.1109/IEMBS.2007.4353588</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1094-687X
ispartof 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, Vol.2007, p.5489-5492
issn 1094-687X
1557-170X
1558-4615
language eng
recordid cdi_ieee_primary_4353588
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithms
Artificial Intelligence
Data mining
Diagnosis, Computer-Assisted - methods
Electroencephalography
Electroencephalography - methods
Epilepsy
Feature extraction
Humans
Multidimensional systems
Pattern Recognition, Automated - methods
Performance analysis
Principal component analysis
Reference Values
Reproducibility of Results
Seizures - diagnosis
Sensitivity and Specificity
Signal analysis
Signal detection
Vectors
title Manifold Learning Applied on EEG Signal of the Epileptic Patients for Detection of Normal and Pre-Seizure States
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A56%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Manifold%20Learning%20Applied%20on%20EEG%20Signal%20of%20the%20Epileptic%20Patients%20for%20Detection%20of%20Normal%20and%20Pre-Seizure%20States&rft.btitle=2007%2029th%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Ataee,%20P.&rft.date=2007-01-01&rft.volume=2007&rft.spage=5489&rft.epage=5492&rft.pages=5489-5492&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=9781424407873&rft.isbn_list=1424407877&rft_id=info:doi/10.1109/IEMBS.2007.4353588&rft_dat=%3Cpubmed_6IE%3E18003254%3C/pubmed_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424407880&rft.eisbn_list=1424407885&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/18003254&rft_ieee_id=4353588&rfr_iscdi=true