Evaluation of an Unsupervised Ontology Enrichment Framework
The paper describes an unsupervised framework for domain ontology enrichment based on mining domain text corpora. Specifically, we enrich the hierarchical backbone of an existing ontology, i.e. its taxonomy, with new domain-specific concepts. The framework is based on hierarchical self-organizing ma...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 228 |
---|---|
container_issue | |
container_start_page | 225 |
container_title | |
container_volume | |
creator | St.Chifu, E. Chifu, V.R. |
description | The paper describes an unsupervised framework for domain ontology enrichment based on mining domain text corpora. Specifically, we enrich the hierarchical backbone of an existing ontology, i.e. its taxonomy, with new domain-specific concepts. The framework is based on hierarchical self-organizing maps. Terms extracted by mining a text corpus encode contextual content information, in a distributional vector space. The enrichment proceeds by populating the existing taxonomy with the extracted terms and attaching them as hyponymsfor the intermediate and leaf nodes of the taxonomy. We propose an evaluation setting in which we asses the power of attraction of the population of terms towards the branches of the taxonomy (recall) and the precision of attaching correct hyponyms (accuracy). The evaluation results presented are in the "four universities" domain. |
doi_str_mv | 10.1109/ICCP.2007.4352164 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4352164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4352164</ieee_id><sourcerecordid>4352164</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-edd4f73bd447f7deeb61de2d857dab24046e3e6888006c6f5558814f5bae7c4d3</originalsourceid><addsrcrecordid>eNotj11LwzAYRgMiKLM_QLzJH2hNmjcfxSspnQ4G88Jdj7R5o9E2HWk32b93sD035-5wHkIeOSs4Z9Xzqq4_ipIxXYCQJVdwQ7JKGw4lAIeKmzuSTdMPO09UEpi4Jy_N0fYHO4cx0tFTG-k2Toc9pmOY0NFNnMd-_DrRJqbQfQ8YZ7pMdsC_Mf0-kFtv-wmzKxdku2w-6_d8vXlb1a_rPHAt5xydA69F6wC01w6xVdxh6YzUzrYlMFAoUBljGFOd8lJKc272srWoO3BiQZ4u3oCIu30Kg02n3fWi-AdIB0dg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Evaluation of an Unsupervised Ontology Enrichment Framework</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>St.Chifu, E. ; Chifu, V.R.</creator><creatorcontrib>St.Chifu, E. ; Chifu, V.R.</creatorcontrib><description>The paper describes an unsupervised framework for domain ontology enrichment based on mining domain text corpora. Specifically, we enrich the hierarchical backbone of an existing ontology, i.e. its taxonomy, with new domain-specific concepts. The framework is based on hierarchical self-organizing maps. Terms extracted by mining a text corpus encode contextual content information, in a distributional vector space. The enrichment proceeds by populating the existing taxonomy with the extracted terms and attaching them as hyponymsfor the intermediate and leaf nodes of the taxonomy. We propose an evaluation setting in which we asses the power of attraction of the population of terms towards the branches of the taxonomy (recall) and the precision of attaching correct hyponyms (accuracy). The evaluation results presented are in the "four universities" domain.</description><identifier>ISBN: 9781424414918</identifier><identifier>ISBN: 1424414911</identifier><identifier>DOI: 10.1109/ICCP.2007.4352164</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data mining ; Decision trees ; Humans ; Joining processes ; Machine learning ; Neural networks ; Ontologies ; Self organizing feature maps ; Taxonomy ; Thesauri</subject><ispartof>2007 IEEE International Conference on Intelligent Computer Communication and Processing, 2007, p.225-228</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4352164$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4352164$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>St.Chifu, E.</creatorcontrib><creatorcontrib>Chifu, V.R.</creatorcontrib><title>Evaluation of an Unsupervised Ontology Enrichment Framework</title><title>2007 IEEE International Conference on Intelligent Computer Communication and Processing</title><addtitle>ICCP</addtitle><description>The paper describes an unsupervised framework for domain ontology enrichment based on mining domain text corpora. Specifically, we enrich the hierarchical backbone of an existing ontology, i.e. its taxonomy, with new domain-specific concepts. The framework is based on hierarchical self-organizing maps. Terms extracted by mining a text corpus encode contextual content information, in a distributional vector space. The enrichment proceeds by populating the existing taxonomy with the extracted terms and attaching them as hyponymsfor the intermediate and leaf nodes of the taxonomy. We propose an evaluation setting in which we asses the power of attraction of the population of terms towards the branches of the taxonomy (recall) and the precision of attaching correct hyponyms (accuracy). The evaluation results presented are in the "four universities" domain.</description><subject>Data mining</subject><subject>Decision trees</subject><subject>Humans</subject><subject>Joining processes</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Ontologies</subject><subject>Self organizing feature maps</subject><subject>Taxonomy</subject><subject>Thesauri</subject><isbn>9781424414918</isbn><isbn>1424414911</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj11LwzAYRgMiKLM_QLzJH2hNmjcfxSspnQ4G88Jdj7R5o9E2HWk32b93sD035-5wHkIeOSs4Z9Xzqq4_ipIxXYCQJVdwQ7JKGw4lAIeKmzuSTdMPO09UEpi4Jy_N0fYHO4cx0tFTG-k2Toc9pmOY0NFNnMd-_DrRJqbQfQ8YZ7pMdsC_Mf0-kFtv-wmzKxdku2w-6_d8vXlb1a_rPHAt5xydA69F6wC01w6xVdxh6YzUzrYlMFAoUBljGFOd8lJKc272srWoO3BiQZ4u3oCIu30Kg02n3fWi-AdIB0dg</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>St.Chifu, E.</creator><creator>Chifu, V.R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200709</creationdate><title>Evaluation of an Unsupervised Ontology Enrichment Framework</title><author>St.Chifu, E. ; Chifu, V.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-edd4f73bd447f7deeb61de2d857dab24046e3e6888006c6f5558814f5bae7c4d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Data mining</topic><topic>Decision trees</topic><topic>Humans</topic><topic>Joining processes</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Ontologies</topic><topic>Self organizing feature maps</topic><topic>Taxonomy</topic><topic>Thesauri</topic><toplevel>online_resources</toplevel><creatorcontrib>St.Chifu, E.</creatorcontrib><creatorcontrib>Chifu, V.R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>St.Chifu, E.</au><au>Chifu, V.R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Evaluation of an Unsupervised Ontology Enrichment Framework</atitle><btitle>2007 IEEE International Conference on Intelligent Computer Communication and Processing</btitle><stitle>ICCP</stitle><date>2007-09</date><risdate>2007</risdate><spage>225</spage><epage>228</epage><pages>225-228</pages><isbn>9781424414918</isbn><isbn>1424414911</isbn><abstract>The paper describes an unsupervised framework for domain ontology enrichment based on mining domain text corpora. Specifically, we enrich the hierarchical backbone of an existing ontology, i.e. its taxonomy, with new domain-specific concepts. The framework is based on hierarchical self-organizing maps. Terms extracted by mining a text corpus encode contextual content information, in a distributional vector space. The enrichment proceeds by populating the existing taxonomy with the extracted terms and attaching them as hyponymsfor the intermediate and leaf nodes of the taxonomy. We propose an evaluation setting in which we asses the power of attraction of the population of terms towards the branches of the taxonomy (recall) and the precision of attaching correct hyponyms (accuracy). The evaluation results presented are in the "four universities" domain.</abstract><pub>IEEE</pub><doi>10.1109/ICCP.2007.4352164</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424414918 |
ispartof | 2007 IEEE International Conference on Intelligent Computer Communication and Processing, 2007, p.225-228 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4352164 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Data mining Decision trees Humans Joining processes Machine learning Neural networks Ontologies Self organizing feature maps Taxonomy Thesauri |
title | Evaluation of an Unsupervised Ontology Enrichment Framework |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A44%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Evaluation%20of%20an%20Unsupervised%20Ontology%20Enrichment%20Framework&rft.btitle=2007%20IEEE%20International%20Conference%20on%20Intelligent%20Computer%20Communication%20and%20Processing&rft.au=St.Chifu,%20E.&rft.date=2007-09&rft.spage=225&rft.epage=228&rft.pages=225-228&rft.isbn=9781424414918&rft.isbn_list=1424414911&rft_id=info:doi/10.1109/ICCP.2007.4352164&rft_dat=%3Cieee_6IE%3E4352164%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4352164&rfr_iscdi=true |