Evaluation of an Unsupervised Ontology Enrichment Framework

The paper describes an unsupervised framework for domain ontology enrichment based on mining domain text corpora. Specifically, we enrich the hierarchical backbone of an existing ontology, i.e. its taxonomy, with new domain-specific concepts. The framework is based on hierarchical self-organizing ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: St.Chifu, E., Chifu, V.R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 228
container_issue
container_start_page 225
container_title
container_volume
creator St.Chifu, E.
Chifu, V.R.
description The paper describes an unsupervised framework for domain ontology enrichment based on mining domain text corpora. Specifically, we enrich the hierarchical backbone of an existing ontology, i.e. its taxonomy, with new domain-specific concepts. The framework is based on hierarchical self-organizing maps. Terms extracted by mining a text corpus encode contextual content information, in a distributional vector space. The enrichment proceeds by populating the existing taxonomy with the extracted terms and attaching them as hyponymsfor the intermediate and leaf nodes of the taxonomy. We propose an evaluation setting in which we asses the power of attraction of the population of terms towards the branches of the taxonomy (recall) and the precision of attaching correct hyponyms (accuracy). The evaluation results presented are in the "four universities" domain.
doi_str_mv 10.1109/ICCP.2007.4352164
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4352164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4352164</ieee_id><sourcerecordid>4352164</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-edd4f73bd447f7deeb61de2d857dab24046e3e6888006c6f5558814f5bae7c4d3</originalsourceid><addsrcrecordid>eNotj11LwzAYRgMiKLM_QLzJH2hNmjcfxSspnQ4G88Jdj7R5o9E2HWk32b93sD035-5wHkIeOSs4Z9Xzqq4_ipIxXYCQJVdwQ7JKGw4lAIeKmzuSTdMPO09UEpi4Jy_N0fYHO4cx0tFTG-k2Toc9pmOY0NFNnMd-_DrRJqbQfQ8YZ7pMdsC_Mf0-kFtv-wmzKxdku2w-6_d8vXlb1a_rPHAt5xydA69F6wC01w6xVdxh6YzUzrYlMFAoUBljGFOd8lJKc272srWoO3BiQZ4u3oCIu30Kg02n3fWi-AdIB0dg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Evaluation of an Unsupervised Ontology Enrichment Framework</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>St.Chifu, E. ; Chifu, V.R.</creator><creatorcontrib>St.Chifu, E. ; Chifu, V.R.</creatorcontrib><description>The paper describes an unsupervised framework for domain ontology enrichment based on mining domain text corpora. Specifically, we enrich the hierarchical backbone of an existing ontology, i.e. its taxonomy, with new domain-specific concepts. The framework is based on hierarchical self-organizing maps. Terms extracted by mining a text corpus encode contextual content information, in a distributional vector space. The enrichment proceeds by populating the existing taxonomy with the extracted terms and attaching them as hyponymsfor the intermediate and leaf nodes of the taxonomy. We propose an evaluation setting in which we asses the power of attraction of the population of terms towards the branches of the taxonomy (recall) and the precision of attaching correct hyponyms (accuracy). The evaluation results presented are in the "four universities" domain.</description><identifier>ISBN: 9781424414918</identifier><identifier>ISBN: 1424414911</identifier><identifier>DOI: 10.1109/ICCP.2007.4352164</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data mining ; Decision trees ; Humans ; Joining processes ; Machine learning ; Neural networks ; Ontologies ; Self organizing feature maps ; Taxonomy ; Thesauri</subject><ispartof>2007 IEEE International Conference on Intelligent Computer Communication and Processing, 2007, p.225-228</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4352164$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4352164$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>St.Chifu, E.</creatorcontrib><creatorcontrib>Chifu, V.R.</creatorcontrib><title>Evaluation of an Unsupervised Ontology Enrichment Framework</title><title>2007 IEEE International Conference on Intelligent Computer Communication and Processing</title><addtitle>ICCP</addtitle><description>The paper describes an unsupervised framework for domain ontology enrichment based on mining domain text corpora. Specifically, we enrich the hierarchical backbone of an existing ontology, i.e. its taxonomy, with new domain-specific concepts. The framework is based on hierarchical self-organizing maps. Terms extracted by mining a text corpus encode contextual content information, in a distributional vector space. The enrichment proceeds by populating the existing taxonomy with the extracted terms and attaching them as hyponymsfor the intermediate and leaf nodes of the taxonomy. We propose an evaluation setting in which we asses the power of attraction of the population of terms towards the branches of the taxonomy (recall) and the precision of attaching correct hyponyms (accuracy). The evaluation results presented are in the "four universities" domain.</description><subject>Data mining</subject><subject>Decision trees</subject><subject>Humans</subject><subject>Joining processes</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Ontologies</subject><subject>Self organizing feature maps</subject><subject>Taxonomy</subject><subject>Thesauri</subject><isbn>9781424414918</isbn><isbn>1424414911</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj11LwzAYRgMiKLM_QLzJH2hNmjcfxSspnQ4G88Jdj7R5o9E2HWk32b93sD035-5wHkIeOSs4Z9Xzqq4_ipIxXYCQJVdwQ7JKGw4lAIeKmzuSTdMPO09UEpi4Jy_N0fYHO4cx0tFTG-k2Toc9pmOY0NFNnMd-_DrRJqbQfQ8YZ7pMdsC_Mf0-kFtv-wmzKxdku2w-6_d8vXlb1a_rPHAt5xydA69F6wC01w6xVdxh6YzUzrYlMFAoUBljGFOd8lJKc272srWoO3BiQZ4u3oCIu30Kg02n3fWi-AdIB0dg</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>St.Chifu, E.</creator><creator>Chifu, V.R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200709</creationdate><title>Evaluation of an Unsupervised Ontology Enrichment Framework</title><author>St.Chifu, E. ; Chifu, V.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-edd4f73bd447f7deeb61de2d857dab24046e3e6888006c6f5558814f5bae7c4d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Data mining</topic><topic>Decision trees</topic><topic>Humans</topic><topic>Joining processes</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Ontologies</topic><topic>Self organizing feature maps</topic><topic>Taxonomy</topic><topic>Thesauri</topic><toplevel>online_resources</toplevel><creatorcontrib>St.Chifu, E.</creatorcontrib><creatorcontrib>Chifu, V.R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>St.Chifu, E.</au><au>Chifu, V.R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Evaluation of an Unsupervised Ontology Enrichment Framework</atitle><btitle>2007 IEEE International Conference on Intelligent Computer Communication and Processing</btitle><stitle>ICCP</stitle><date>2007-09</date><risdate>2007</risdate><spage>225</spage><epage>228</epage><pages>225-228</pages><isbn>9781424414918</isbn><isbn>1424414911</isbn><abstract>The paper describes an unsupervised framework for domain ontology enrichment based on mining domain text corpora. Specifically, we enrich the hierarchical backbone of an existing ontology, i.e. its taxonomy, with new domain-specific concepts. The framework is based on hierarchical self-organizing maps. Terms extracted by mining a text corpus encode contextual content information, in a distributional vector space. The enrichment proceeds by populating the existing taxonomy with the extracted terms and attaching them as hyponymsfor the intermediate and leaf nodes of the taxonomy. We propose an evaluation setting in which we asses the power of attraction of the population of terms towards the branches of the taxonomy (recall) and the precision of attaching correct hyponyms (accuracy). The evaluation results presented are in the "four universities" domain.</abstract><pub>IEEE</pub><doi>10.1109/ICCP.2007.4352164</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424414918
ispartof 2007 IEEE International Conference on Intelligent Computer Communication and Processing, 2007, p.225-228
issn
language eng
recordid cdi_ieee_primary_4352164
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Data mining
Decision trees
Humans
Joining processes
Machine learning
Neural networks
Ontologies
Self organizing feature maps
Taxonomy
Thesauri
title Evaluation of an Unsupervised Ontology Enrichment Framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A44%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Evaluation%20of%20an%20Unsupervised%20Ontology%20Enrichment%20Framework&rft.btitle=2007%20IEEE%20International%20Conference%20on%20Intelligent%20Computer%20Communication%20and%20Processing&rft.au=St.Chifu,%20E.&rft.date=2007-09&rft.spage=225&rft.epage=228&rft.pages=225-228&rft.isbn=9781424414918&rft.isbn_list=1424414911&rft_id=info:doi/10.1109/ICCP.2007.4352164&rft_dat=%3Cieee_6IE%3E4352164%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4352164&rfr_iscdi=true