Design Method and Application of Wavelet Neural Network for Direct Torque Control System

A torque ripple reduction technique based on wavelet network of direct torque control running in low-speed is presented. The wavelet network can accurately localizes the characteristics of a signal both in the time and frequency domains, and the occurring instants of the signal change can be identif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ding Guangbin, Pang Peilin
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3-824
container_issue
container_start_page 3-821
container_title
container_volume
creator Ding Guangbin
Pang Peilin
description A torque ripple reduction technique based on wavelet network of direct torque control running in low-speed is presented. The wavelet network can accurately localizes the characteristics of a signal both in the time and frequency domains, and the occurring instants of the signal change can be identified by the multi-scale representation of the signal.Taking advantage of complex wavelet transform, combined information can be obtained from both the magnitudes and arguments of complex wavelet transform coefficients to extract the desired feature of the transient signal. The input nodes of the WN are the stator current error and the change in the stator current error and the output node of the WN is the stator resistance error. The synthesized method of recursive orthogonal least squares algorithm and improved Givens rotation is used to fulfill the wavelet network structure initialization and parameter identification, and then the accurate stator flux vector and electromagnetic torque are acquired by means of state estimator, optimizing the inverter control strategy. The simulation results show effectiveness of the proposed control algorithm.
doi_str_mv 10.1109/ICEMI.2007.4351044
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4351044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4351044</ieee_id><sourcerecordid>4351044</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-86dd4c513ac3dc3f946224cff347abf13e27bd1d6c59c046b03cb362830fba823</originalsourceid><addsrcrecordid>eNo1kL1OwzAYAI0QElDyArD4BVo-21-cZKzSUiK1MFAJtsrxDxjSuDguqG8PEmU63XLDEXLNYMIYVLdNPV81Ew5QTFDkDBBPSFYVJUOOyJiQ5Sm5_JecnZNsGN4BgBUSIccL8jKzg3_t6cqmt2Co6g2d7nad1yr50NPg6LP6sp1N9MHuo-p-kb5D_KAuRDrz0epE1yF-7i2tQ59i6OjTYUh2e0XOnOoGmx05Iuu7-bq-Hy8fF009XY59BWlcSmNQ50woLYwWrkLJOWrnBBaqdUxYXrSGGanzSgPKFoRuheSlANeqkosRufnLemvtZhf9VsXD5vhC_AACJVL7</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Design Method and Application of Wavelet Neural Network for Direct Torque Control System</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ding Guangbin ; Pang Peilin</creator><creatorcontrib>Ding Guangbin ; Pang Peilin</creatorcontrib><description>A torque ripple reduction technique based on wavelet network of direct torque control running in low-speed is presented. The wavelet network can accurately localizes the characteristics of a signal both in the time and frequency domains, and the occurring instants of the signal change can be identified by the multi-scale representation of the signal.Taking advantage of complex wavelet transform, combined information can be obtained from both the magnitudes and arguments of complex wavelet transform coefficients to extract the desired feature of the transient signal. The input nodes of the WN are the stator current error and the change in the stator current error and the output node of the WN is the stator resistance error. The synthesized method of recursive orthogonal least squares algorithm and improved Givens rotation is used to fulfill the wavelet network structure initialization and parameter identification, and then the accurate stator flux vector and electromagnetic torque are acquired by means of state estimator, optimizing the inverter control strategy. The simulation results show effectiveness of the proposed control algorithm.</description><identifier>ISBN: 1424411351</identifier><identifier>ISBN: 9781424411351</identifier><identifier>EISBN: 9781424411368</identifier><identifier>EISBN: 142441136X</identifier><identifier>DOI: 10.1109/ICEMI.2007.4351044</identifier><language>eng</language><publisher>IEEE</publisher><subject>combined information ; complex wavelet transform ; Data mining ; Design methodology ; direct torque control ; dynamic system identification ; Feature extraction ; Frequency domain analysis ; Induction motor ; Neural networks ; Signal processing ; Stators ; Torque control ; Wavelet domain ; wavelet network ; Wavelet transforms</subject><ispartof>2007 8th International Conference on Electronic Measurement and Instruments, 2007, p.3-821-3-824</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4351044$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4351044$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ding Guangbin</creatorcontrib><creatorcontrib>Pang Peilin</creatorcontrib><title>Design Method and Application of Wavelet Neural Network for Direct Torque Control System</title><title>2007 8th International Conference on Electronic Measurement and Instruments</title><addtitle>ICEMI</addtitle><description>A torque ripple reduction technique based on wavelet network of direct torque control running in low-speed is presented. The wavelet network can accurately localizes the characteristics of a signal both in the time and frequency domains, and the occurring instants of the signal change can be identified by the multi-scale representation of the signal.Taking advantage of complex wavelet transform, combined information can be obtained from both the magnitudes and arguments of complex wavelet transform coefficients to extract the desired feature of the transient signal. The input nodes of the WN are the stator current error and the change in the stator current error and the output node of the WN is the stator resistance error. The synthesized method of recursive orthogonal least squares algorithm and improved Givens rotation is used to fulfill the wavelet network structure initialization and parameter identification, and then the accurate stator flux vector and electromagnetic torque are acquired by means of state estimator, optimizing the inverter control strategy. The simulation results show effectiveness of the proposed control algorithm.</description><subject>combined information</subject><subject>complex wavelet transform</subject><subject>Data mining</subject><subject>Design methodology</subject><subject>direct torque control</subject><subject>dynamic system identification</subject><subject>Feature extraction</subject><subject>Frequency domain analysis</subject><subject>Induction motor</subject><subject>Neural networks</subject><subject>Signal processing</subject><subject>Stators</subject><subject>Torque control</subject><subject>Wavelet domain</subject><subject>wavelet network</subject><subject>Wavelet transforms</subject><isbn>1424411351</isbn><isbn>9781424411351</isbn><isbn>9781424411368</isbn><isbn>142441136X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kL1OwzAYAI0QElDyArD4BVo-21-cZKzSUiK1MFAJtsrxDxjSuDguqG8PEmU63XLDEXLNYMIYVLdNPV81Ew5QTFDkDBBPSFYVJUOOyJiQ5Sm5_JecnZNsGN4BgBUSIccL8jKzg3_t6cqmt2Co6g2d7nad1yr50NPg6LP6sp1N9MHuo-p-kb5D_KAuRDrz0epE1yF-7i2tQ59i6OjTYUh2e0XOnOoGmx05Iuu7-bq-Hy8fF009XY59BWlcSmNQ50woLYwWrkLJOWrnBBaqdUxYXrSGGanzSgPKFoRuheSlANeqkosRufnLemvtZhf9VsXD5vhC_AACJVL7</recordid><startdate>200708</startdate><enddate>200708</enddate><creator>Ding Guangbin</creator><creator>Pang Peilin</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200708</creationdate><title>Design Method and Application of Wavelet Neural Network for Direct Torque Control System</title><author>Ding Guangbin ; Pang Peilin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-86dd4c513ac3dc3f946224cff347abf13e27bd1d6c59c046b03cb362830fba823</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>combined information</topic><topic>complex wavelet transform</topic><topic>Data mining</topic><topic>Design methodology</topic><topic>direct torque control</topic><topic>dynamic system identification</topic><topic>Feature extraction</topic><topic>Frequency domain analysis</topic><topic>Induction motor</topic><topic>Neural networks</topic><topic>Signal processing</topic><topic>Stators</topic><topic>Torque control</topic><topic>Wavelet domain</topic><topic>wavelet network</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Ding Guangbin</creatorcontrib><creatorcontrib>Pang Peilin</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ding Guangbin</au><au>Pang Peilin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Design Method and Application of Wavelet Neural Network for Direct Torque Control System</atitle><btitle>2007 8th International Conference on Electronic Measurement and Instruments</btitle><stitle>ICEMI</stitle><date>2007-08</date><risdate>2007</risdate><spage>3-821</spage><epage>3-824</epage><pages>3-821-3-824</pages><isbn>1424411351</isbn><isbn>9781424411351</isbn><eisbn>9781424411368</eisbn><eisbn>142441136X</eisbn><abstract>A torque ripple reduction technique based on wavelet network of direct torque control running in low-speed is presented. The wavelet network can accurately localizes the characteristics of a signal both in the time and frequency domains, and the occurring instants of the signal change can be identified by the multi-scale representation of the signal.Taking advantage of complex wavelet transform, combined information can be obtained from both the magnitudes and arguments of complex wavelet transform coefficients to extract the desired feature of the transient signal. The input nodes of the WN are the stator current error and the change in the stator current error and the output node of the WN is the stator resistance error. The synthesized method of recursive orthogonal least squares algorithm and improved Givens rotation is used to fulfill the wavelet network structure initialization and parameter identification, and then the accurate stator flux vector and electromagnetic torque are acquired by means of state estimator, optimizing the inverter control strategy. The simulation results show effectiveness of the proposed control algorithm.</abstract><pub>IEEE</pub><doi>10.1109/ICEMI.2007.4351044</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424411351
ispartof 2007 8th International Conference on Electronic Measurement and Instruments, 2007, p.3-821-3-824
issn
language eng
recordid cdi_ieee_primary_4351044
source IEEE Electronic Library (IEL) Conference Proceedings
subjects combined information
complex wavelet transform
Data mining
Design methodology
direct torque control
dynamic system identification
Feature extraction
Frequency domain analysis
Induction motor
Neural networks
Signal processing
Stators
Torque control
Wavelet domain
wavelet network
Wavelet transforms
title Design Method and Application of Wavelet Neural Network for Direct Torque Control System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T17%3A38%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Design%20Method%20and%20Application%20of%20Wavelet%20Neural%20Network%20for%20Direct%20Torque%20Control%20System&rft.btitle=2007%208th%20International%20Conference%20on%20Electronic%20Measurement%20and%20Instruments&rft.au=Ding%20Guangbin&rft.date=2007-08&rft.spage=3-821&rft.epage=3-824&rft.pages=3-821-3-824&rft.isbn=1424411351&rft.isbn_list=9781424411351&rft_id=info:doi/10.1109/ICEMI.2007.4351044&rft_dat=%3Cieee_6IE%3E4351044%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424411368&rft.eisbn_list=142441136X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4351044&rfr_iscdi=true