Discrete Lyapunov Exponent and Resistance to Differential Cryptanalysis
In a recent paper, Jakimoski and Subbalakshmi provided a nice connection between the so-called discrete Lyapunov exponent of a permutation F defined on a finite lattice and its maximal differential probability, a parameter that measures the complexity of a differential cryptanalysis attack on the su...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. 2, Analog and digital signal processing Analog and digital signal processing, 2007-10, Vol.54 (10), p.882-886 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 886 |
---|---|
container_issue | 10 |
container_start_page | 882 |
container_title | IEEE transactions on circuits and systems. 2, Analog and digital signal processing |
container_volume | 54 |
creator | Amigo, J.M. Kocarev, L. Szczepanski, J. |
description | In a recent paper, Jakimoski and Subbalakshmi provided a nice connection between the so-called discrete Lyapunov exponent of a permutation F defined on a finite lattice and its maximal differential probability, a parameter that measures the complexity of a differential cryptanalysis attack on the substitution defined by F. In this brief, we take a second look at their result to find some practical shortcomings. We also discuss more general aspects. |
doi_str_mv | 10.1109/TCSII.2007.901576 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4349217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4349217</ieee_id><sourcerecordid>2544819001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-aaf02f6fecb4d0f6159e2c61d44c51519bb78fa2f185cbd765f2e7d91bd54bc93</originalsourceid><addsrcrecordid>eNp9kcFLwzAYxYsoOKd_gHgpHvTUmS9NmuYo3ZyDgaDzHNL0C3TUtiaduP_ezIoHD56-D97vPXi8KLoEMgMg8m5TvKxWM0qImEkCXGRH0QQ4z5NUSDg-_EwmQjBxGp15vyWESpLSSbSc1944HDBe73W_a7uPePHZdy22Q6zbKn5GX_tBtwbjoYvntbXoglbrJi7cvg-KbvYBOY9OrG48XvzcafT6sNgUj8n6abkq7teJSTkfEq0toTazaEpWEZsBl0hNBhVjhgMHWZYit5payLkpK5FxS1FUEsqKs9LIdBrdjrm969536Af1Fgpg0-gWu51XucwoJZzSQN78S6aM5akgJIDXf8Btt3Ohl1cSQlBGcwgQjJBxnfcOrepd_abdXgFRhwXU9wLqsIAaFwieq9FTI-Ivz1ImKYj0C8cigoE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912236281</pqid></control><display><type>article</type><title>Discrete Lyapunov Exponent and Resistance to Differential Cryptanalysis</title><source>IEEE Electronic Library (IEL)</source><creator>Amigo, J.M. ; Kocarev, L. ; Szczepanski, J.</creator><creatorcontrib>Amigo, J.M. ; Kocarev, L. ; Szczepanski, J.</creatorcontrib><description>In a recent paper, Jakimoski and Subbalakshmi provided a nice connection between the so-called discrete Lyapunov exponent of a permutation F defined on a finite lattice and its maximal differential probability, a parameter that measures the complexity of a differential cryptanalysis attack on the substitution defined by F. In this brief, we take a second look at their result to find some practical shortcomings. We also discuss more general aspects.</description><identifier>ISSN: 1549-7747</identifier><identifier>ISSN: 1057-7130</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2007.901576</identifier><identifier>CODEN: ICSPE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Chaos ; Circuits ; Complexity ; Cryptography ; Differential cryptanalysis ; Differential thermal analysis ; discrete Lyapunov exponent (DLE) ; Electrical resistance measurement ; Joints ; Lattices ; Lyapunov exponents ; Mathematical analysis ; maximum differential probability (DP) ; Permutations ; Standards development ; Upper bound</subject><ispartof>IEEE transactions on circuits and systems. 2, Analog and digital signal processing, 2007-10, Vol.54 (10), p.882-886</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-aaf02f6fecb4d0f6159e2c61d44c51519bb78fa2f185cbd765f2e7d91bd54bc93</citedby><cites>FETCH-LOGICAL-c355t-aaf02f6fecb4d0f6159e2c61d44c51519bb78fa2f185cbd765f2e7d91bd54bc93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4349217$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4349217$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Amigo, J.M.</creatorcontrib><creatorcontrib>Kocarev, L.</creatorcontrib><creatorcontrib>Szczepanski, J.</creatorcontrib><title>Discrete Lyapunov Exponent and Resistance to Differential Cryptanalysis</title><title>IEEE transactions on circuits and systems. 2, Analog and digital signal processing</title><addtitle>TCSII</addtitle><description>In a recent paper, Jakimoski and Subbalakshmi provided a nice connection between the so-called discrete Lyapunov exponent of a permutation F defined on a finite lattice and its maximal differential probability, a parameter that measures the complexity of a differential cryptanalysis attack on the substitution defined by F. In this brief, we take a second look at their result to find some practical shortcomings. We also discuss more general aspects.</description><subject>Chaos</subject><subject>Circuits</subject><subject>Complexity</subject><subject>Cryptography</subject><subject>Differential cryptanalysis</subject><subject>Differential thermal analysis</subject><subject>discrete Lyapunov exponent (DLE)</subject><subject>Electrical resistance measurement</subject><subject>Joints</subject><subject>Lattices</subject><subject>Lyapunov exponents</subject><subject>Mathematical analysis</subject><subject>maximum differential probability (DP)</subject><subject>Permutations</subject><subject>Standards development</subject><subject>Upper bound</subject><issn>1549-7747</issn><issn>1057-7130</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kcFLwzAYxYsoOKd_gHgpHvTUmS9NmuYo3ZyDgaDzHNL0C3TUtiaduP_ezIoHD56-D97vPXi8KLoEMgMg8m5TvKxWM0qImEkCXGRH0QQ4z5NUSDg-_EwmQjBxGp15vyWESpLSSbSc1944HDBe73W_a7uPePHZdy22Q6zbKn5GX_tBtwbjoYvntbXoglbrJi7cvg-KbvYBOY9OrG48XvzcafT6sNgUj8n6abkq7teJSTkfEq0toTazaEpWEZsBl0hNBhVjhgMHWZYit5payLkpK5FxS1FUEsqKs9LIdBrdjrm969536Af1Fgpg0-gWu51XucwoJZzSQN78S6aM5akgJIDXf8Btt3Ohl1cSQlBGcwgQjJBxnfcOrepd_abdXgFRhwXU9wLqsIAaFwieq9FTI-Ivz1ImKYj0C8cigoE</recordid><startdate>20071001</startdate><enddate>20071001</enddate><creator>Amigo, J.M.</creator><creator>Kocarev, L.</creator><creator>Szczepanski, J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20071001</creationdate><title>Discrete Lyapunov Exponent and Resistance to Differential Cryptanalysis</title><author>Amigo, J.M. ; Kocarev, L. ; Szczepanski, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-aaf02f6fecb4d0f6159e2c61d44c51519bb78fa2f185cbd765f2e7d91bd54bc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Chaos</topic><topic>Circuits</topic><topic>Complexity</topic><topic>Cryptography</topic><topic>Differential cryptanalysis</topic><topic>Differential thermal analysis</topic><topic>discrete Lyapunov exponent (DLE)</topic><topic>Electrical resistance measurement</topic><topic>Joints</topic><topic>Lattices</topic><topic>Lyapunov exponents</topic><topic>Mathematical analysis</topic><topic>maximum differential probability (DP)</topic><topic>Permutations</topic><topic>Standards development</topic><topic>Upper bound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amigo, J.M.</creatorcontrib><creatorcontrib>Kocarev, L.</creatorcontrib><creatorcontrib>Szczepanski, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on circuits and systems. 2, Analog and digital signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Amigo, J.M.</au><au>Kocarev, L.</au><au>Szczepanski, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete Lyapunov Exponent and Resistance to Differential Cryptanalysis</atitle><jtitle>IEEE transactions on circuits and systems. 2, Analog and digital signal processing</jtitle><stitle>TCSII</stitle><date>2007-10-01</date><risdate>2007</risdate><volume>54</volume><issue>10</issue><spage>882</spage><epage>886</epage><pages>882-886</pages><issn>1549-7747</issn><issn>1057-7130</issn><eissn>1558-3791</eissn><coden>ICSPE5</coden><abstract>In a recent paper, Jakimoski and Subbalakshmi provided a nice connection between the so-called discrete Lyapunov exponent of a permutation F defined on a finite lattice and its maximal differential probability, a parameter that measures the complexity of a differential cryptanalysis attack on the substitution defined by F. In this brief, we take a second look at their result to find some practical shortcomings. We also discuss more general aspects.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2007.901576</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1549-7747 |
ispartof | IEEE transactions on circuits and systems. 2, Analog and digital signal processing, 2007-10, Vol.54 (10), p.882-886 |
issn | 1549-7747 1057-7130 1558-3791 |
language | eng |
recordid | cdi_ieee_primary_4349217 |
source | IEEE Electronic Library (IEL) |
subjects | Chaos Circuits Complexity Cryptography Differential cryptanalysis Differential thermal analysis discrete Lyapunov exponent (DLE) Electrical resistance measurement Joints Lattices Lyapunov exponents Mathematical analysis maximum differential probability (DP) Permutations Standards development Upper bound |
title | Discrete Lyapunov Exponent and Resistance to Differential Cryptanalysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T03%3A32%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20Lyapunov%20Exponent%20and%20Resistance%20to%20Differential%20Cryptanalysis&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%202,%20Analog%20and%20digital%20signal%20processing&rft.au=Amigo,%20J.M.&rft.date=2007-10-01&rft.volume=54&rft.issue=10&rft.spage=882&rft.epage=886&rft.pages=882-886&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ICSPE5&rft_id=info:doi/10.1109/TCSII.2007.901576&rft_dat=%3Cproquest_RIE%3E2544819001%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912236281&rft_id=info:pmid/&rft_ieee_id=4349217&rfr_iscdi=true |