Discrete Lyapunov Exponent and Resistance to Differential Cryptanalysis

In a recent paper, Jakimoski and Subbalakshmi provided a nice connection between the so-called discrete Lyapunov exponent of a permutation F defined on a finite lattice and its maximal differential probability, a parameter that measures the complexity of a differential cryptanalysis attack on the su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. 2, Analog and digital signal processing Analog and digital signal processing, 2007-10, Vol.54 (10), p.882-886
Hauptverfasser: Amigo, J.M., Kocarev, L., Szczepanski, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 886
container_issue 10
container_start_page 882
container_title IEEE transactions on circuits and systems. 2, Analog and digital signal processing
container_volume 54
creator Amigo, J.M.
Kocarev, L.
Szczepanski, J.
description In a recent paper, Jakimoski and Subbalakshmi provided a nice connection between the so-called discrete Lyapunov exponent of a permutation F defined on a finite lattice and its maximal differential probability, a parameter that measures the complexity of a differential cryptanalysis attack on the substitution defined by F. In this brief, we take a second look at their result to find some practical shortcomings. We also discuss more general aspects.
doi_str_mv 10.1109/TCSII.2007.901576
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4349217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4349217</ieee_id><sourcerecordid>2544819001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-aaf02f6fecb4d0f6159e2c61d44c51519bb78fa2f185cbd765f2e7d91bd54bc93</originalsourceid><addsrcrecordid>eNp9kcFLwzAYxYsoOKd_gHgpHvTUmS9NmuYo3ZyDgaDzHNL0C3TUtiaduP_ezIoHD56-D97vPXi8KLoEMgMg8m5TvKxWM0qImEkCXGRH0QQ4z5NUSDg-_EwmQjBxGp15vyWESpLSSbSc1944HDBe73W_a7uPePHZdy22Q6zbKn5GX_tBtwbjoYvntbXoglbrJi7cvg-KbvYBOY9OrG48XvzcafT6sNgUj8n6abkq7teJSTkfEq0toTazaEpWEZsBl0hNBhVjhgMHWZYit5payLkpK5FxS1FUEsqKs9LIdBrdjrm969536Af1Fgpg0-gWu51XucwoJZzSQN78S6aM5akgJIDXf8Btt3Ohl1cSQlBGcwgQjJBxnfcOrepd_abdXgFRhwXU9wLqsIAaFwieq9FTI-Ivz1ImKYj0C8cigoE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912236281</pqid></control><display><type>article</type><title>Discrete Lyapunov Exponent and Resistance to Differential Cryptanalysis</title><source>IEEE Electronic Library (IEL)</source><creator>Amigo, J.M. ; Kocarev, L. ; Szczepanski, J.</creator><creatorcontrib>Amigo, J.M. ; Kocarev, L. ; Szczepanski, J.</creatorcontrib><description>In a recent paper, Jakimoski and Subbalakshmi provided a nice connection between the so-called discrete Lyapunov exponent of a permutation F defined on a finite lattice and its maximal differential probability, a parameter that measures the complexity of a differential cryptanalysis attack on the substitution defined by F. In this brief, we take a second look at their result to find some practical shortcomings. We also discuss more general aspects.</description><identifier>ISSN: 1549-7747</identifier><identifier>ISSN: 1057-7130</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2007.901576</identifier><identifier>CODEN: ICSPE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Chaos ; Circuits ; Complexity ; Cryptography ; Differential cryptanalysis ; Differential thermal analysis ; discrete Lyapunov exponent (DLE) ; Electrical resistance measurement ; Joints ; Lattices ; Lyapunov exponents ; Mathematical analysis ; maximum differential probability (DP) ; Permutations ; Standards development ; Upper bound</subject><ispartof>IEEE transactions on circuits and systems. 2, Analog and digital signal processing, 2007-10, Vol.54 (10), p.882-886</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-aaf02f6fecb4d0f6159e2c61d44c51519bb78fa2f185cbd765f2e7d91bd54bc93</citedby><cites>FETCH-LOGICAL-c355t-aaf02f6fecb4d0f6159e2c61d44c51519bb78fa2f185cbd765f2e7d91bd54bc93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4349217$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4349217$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Amigo, J.M.</creatorcontrib><creatorcontrib>Kocarev, L.</creatorcontrib><creatorcontrib>Szczepanski, J.</creatorcontrib><title>Discrete Lyapunov Exponent and Resistance to Differential Cryptanalysis</title><title>IEEE transactions on circuits and systems. 2, Analog and digital signal processing</title><addtitle>TCSII</addtitle><description>In a recent paper, Jakimoski and Subbalakshmi provided a nice connection between the so-called discrete Lyapunov exponent of a permutation F defined on a finite lattice and its maximal differential probability, a parameter that measures the complexity of a differential cryptanalysis attack on the substitution defined by F. In this brief, we take a second look at their result to find some practical shortcomings. We also discuss more general aspects.</description><subject>Chaos</subject><subject>Circuits</subject><subject>Complexity</subject><subject>Cryptography</subject><subject>Differential cryptanalysis</subject><subject>Differential thermal analysis</subject><subject>discrete Lyapunov exponent (DLE)</subject><subject>Electrical resistance measurement</subject><subject>Joints</subject><subject>Lattices</subject><subject>Lyapunov exponents</subject><subject>Mathematical analysis</subject><subject>maximum differential probability (DP)</subject><subject>Permutations</subject><subject>Standards development</subject><subject>Upper bound</subject><issn>1549-7747</issn><issn>1057-7130</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kcFLwzAYxYsoOKd_gHgpHvTUmS9NmuYo3ZyDgaDzHNL0C3TUtiaduP_ezIoHD56-D97vPXi8KLoEMgMg8m5TvKxWM0qImEkCXGRH0QQ4z5NUSDg-_EwmQjBxGp15vyWESpLSSbSc1944HDBe73W_a7uPePHZdy22Q6zbKn5GX_tBtwbjoYvntbXoglbrJi7cvg-KbvYBOY9OrG48XvzcafT6sNgUj8n6abkq7teJSTkfEq0toTazaEpWEZsBl0hNBhVjhgMHWZYit5payLkpK5FxS1FUEsqKs9LIdBrdjrm969536Af1Fgpg0-gWu51XucwoJZzSQN78S6aM5akgJIDXf8Btt3Ohl1cSQlBGcwgQjJBxnfcOrepd_abdXgFRhwXU9wLqsIAaFwieq9FTI-Ivz1ImKYj0C8cigoE</recordid><startdate>20071001</startdate><enddate>20071001</enddate><creator>Amigo, J.M.</creator><creator>Kocarev, L.</creator><creator>Szczepanski, J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20071001</creationdate><title>Discrete Lyapunov Exponent and Resistance to Differential Cryptanalysis</title><author>Amigo, J.M. ; Kocarev, L. ; Szczepanski, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-aaf02f6fecb4d0f6159e2c61d44c51519bb78fa2f185cbd765f2e7d91bd54bc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Chaos</topic><topic>Circuits</topic><topic>Complexity</topic><topic>Cryptography</topic><topic>Differential cryptanalysis</topic><topic>Differential thermal analysis</topic><topic>discrete Lyapunov exponent (DLE)</topic><topic>Electrical resistance measurement</topic><topic>Joints</topic><topic>Lattices</topic><topic>Lyapunov exponents</topic><topic>Mathematical analysis</topic><topic>maximum differential probability (DP)</topic><topic>Permutations</topic><topic>Standards development</topic><topic>Upper bound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amigo, J.M.</creatorcontrib><creatorcontrib>Kocarev, L.</creatorcontrib><creatorcontrib>Szczepanski, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on circuits and systems. 2, Analog and digital signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Amigo, J.M.</au><au>Kocarev, L.</au><au>Szczepanski, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete Lyapunov Exponent and Resistance to Differential Cryptanalysis</atitle><jtitle>IEEE transactions on circuits and systems. 2, Analog and digital signal processing</jtitle><stitle>TCSII</stitle><date>2007-10-01</date><risdate>2007</risdate><volume>54</volume><issue>10</issue><spage>882</spage><epage>886</epage><pages>882-886</pages><issn>1549-7747</issn><issn>1057-7130</issn><eissn>1558-3791</eissn><coden>ICSPE5</coden><abstract>In a recent paper, Jakimoski and Subbalakshmi provided a nice connection between the so-called discrete Lyapunov exponent of a permutation F defined on a finite lattice and its maximal differential probability, a parameter that measures the complexity of a differential cryptanalysis attack on the substitution defined by F. In this brief, we take a second look at their result to find some practical shortcomings. We also discuss more general aspects.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2007.901576</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-7747
ispartof IEEE transactions on circuits and systems. 2, Analog and digital signal processing, 2007-10, Vol.54 (10), p.882-886
issn 1549-7747
1057-7130
1558-3791
language eng
recordid cdi_ieee_primary_4349217
source IEEE Electronic Library (IEL)
subjects Chaos
Circuits
Complexity
Cryptography
Differential cryptanalysis
Differential thermal analysis
discrete Lyapunov exponent (DLE)
Electrical resistance measurement
Joints
Lattices
Lyapunov exponents
Mathematical analysis
maximum differential probability (DP)
Permutations
Standards development
Upper bound
title Discrete Lyapunov Exponent and Resistance to Differential Cryptanalysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T03%3A32%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20Lyapunov%20Exponent%20and%20Resistance%20to%20Differential%20Cryptanalysis&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%202,%20Analog%20and%20digital%20signal%20processing&rft.au=Amigo,%20J.M.&rft.date=2007-10-01&rft.volume=54&rft.issue=10&rft.spage=882&rft.epage=886&rft.pages=882-886&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ICSPE5&rft_id=info:doi/10.1109/TCSII.2007.901576&rft_dat=%3Cproquest_RIE%3E2544819001%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912236281&rft_id=info:pmid/&rft_ieee_id=4349217&rfr_iscdi=true