Autonomous Self Commissioning Method for Speed Sensorless Controlled Induction Machines
Speed sensorless control of ac machines at zero speed so far is only possible using signal injection methods. Especially when applied to induction machines the spatial saturation leads to a dependence of the resulting control signals on the flux/load level. Usually this dependence has to be identifi...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1185 |
---|---|
container_issue | |
container_start_page | 1179 |
container_title | |
container_volume | |
creator | Wolbank, T.M. Vogelsberger, M.A. Stumberger, R. Mohagheghi, S. Habetler, T.G. Harley, R.G. |
description | Speed sensorless control of ac machines at zero speed so far is only possible using signal injection methods. Especially when applied to induction machines the spatial saturation leads to a dependence of the resulting control signals on the flux/load level. Usually this dependence has to be identified on a special test stand during a commissioning procedure for each type of induction machine. In this paper an autonomous commissioning method based on a neural network approach is proposed that does neither depend on a speed sensor present as a reference nor on a load dynamometer coupled to the machine and guaranteeing constant speed. The training data for the neural network is obtained using only acceleration and deceleration measurements of the uncoupled machine. The reliability of the proposed autonomous commissioning method is proven by measurement results. When comparing the resulting sensorless control performance, the proposed commissioning method reaches the same level of performance as a manual identification using load dynamometer as well as speed sensor. |
doi_str_mv | 10.1109/07IAS.2007.185 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4347934</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4347934</ieee_id><sourcerecordid>4347934</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-abe5fe43edef9d9c4599b8434901b2941534d557e57eef4181e9ce7468486be23</originalsourceid><addsrcrecordid>eNpNjEtPwzAQhM1LopReuXDJH0jZddaxfawqCpVacSgIblUeG2qU2FWcHvj3RIID0kgjzXwzQtwhzBHBPoBeL3ZzCaDnaNSZmFltkCQRyhzgXEyk0nmqQX5c_O-UpUsxAbQ6lTmaa3ET4xcAZCbHiXhfnIbgQxdOMdlx2yTL0HUuRhe885_JlodDqJMm9MnuyFyPjI-hbznGkfRDH9p2TNe-PlXDuEm2RXVwnuOtuGqKNvLsz6fibfX4unxONy9P6-VikzoENaRFyaphyrjmxta2ImVtaSgjC1hKS6gyqpXSPIobQoNsK9aUGzJ5yTKbivvfX8fM-2PvuqL_3o8H2maU_QBDFVZv</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Autonomous Self Commissioning Method for Speed Sensorless Controlled Induction Machines</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wolbank, T.M. ; Vogelsberger, M.A. ; Stumberger, R. ; Mohagheghi, S. ; Habetler, T.G. ; Harley, R.G.</creator><creatorcontrib>Wolbank, T.M. ; Vogelsberger, M.A. ; Stumberger, R. ; Mohagheghi, S. ; Habetler, T.G. ; Harley, R.G.</creatorcontrib><description>Speed sensorless control of ac machines at zero speed so far is only possible using signal injection methods. Especially when applied to induction machines the spatial saturation leads to a dependence of the resulting control signals on the flux/load level. Usually this dependence has to be identified on a special test stand during a commissioning procedure for each type of induction machine. In this paper an autonomous commissioning method based on a neural network approach is proposed that does neither depend on a speed sensor present as a reference nor on a load dynamometer coupled to the machine and guaranteeing constant speed. The training data for the neural network is obtained using only acceleration and deceleration measurements of the uncoupled machine. The reliability of the proposed autonomous commissioning method is proven by measurement results. When comparing the resulting sensorless control performance, the proposed commissioning method reaches the same level of performance as a manual identification using load dynamometer as well as speed sensor.</description><identifier>ISSN: 0197-2618</identifier><identifier>ISBN: 9781424412594</identifier><identifier>ISBN: 1424412595</identifier><identifier>EISSN: 2576-702X</identifier><identifier>EISBN: 9781424412600</identifier><identifier>EISBN: 1424412609</identifier><identifier>DOI: 10.1109/07IAS.2007.185</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; Accelerometers ; Anisotropic magnetoresistance ; Frequency estimation ; Induction machines ; Mechanical sensors ; Neural networks ; Sensorless control ; Shafts ; Voltage</subject><ispartof>2007 IEEE Industry Applications Annual Meeting, 2007, p.1179-1185</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4347934$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,782,786,791,792,2060,27932,54927</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4347934$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wolbank, T.M.</creatorcontrib><creatorcontrib>Vogelsberger, M.A.</creatorcontrib><creatorcontrib>Stumberger, R.</creatorcontrib><creatorcontrib>Mohagheghi, S.</creatorcontrib><creatorcontrib>Habetler, T.G.</creatorcontrib><creatorcontrib>Harley, R.G.</creatorcontrib><title>Autonomous Self Commissioning Method for Speed Sensorless Controlled Induction Machines</title><title>2007 IEEE Industry Applications Annual Meeting</title><addtitle>IAS</addtitle><description>Speed sensorless control of ac machines at zero speed so far is only possible using signal injection methods. Especially when applied to induction machines the spatial saturation leads to a dependence of the resulting control signals on the flux/load level. Usually this dependence has to be identified on a special test stand during a commissioning procedure for each type of induction machine. In this paper an autonomous commissioning method based on a neural network approach is proposed that does neither depend on a speed sensor present as a reference nor on a load dynamometer coupled to the machine and guaranteeing constant speed. The training data for the neural network is obtained using only acceleration and deceleration measurements of the uncoupled machine. The reliability of the proposed autonomous commissioning method is proven by measurement results. When comparing the resulting sensorless control performance, the proposed commissioning method reaches the same level of performance as a manual identification using load dynamometer as well as speed sensor.</description><subject>Acceleration</subject><subject>Accelerometers</subject><subject>Anisotropic magnetoresistance</subject><subject>Frequency estimation</subject><subject>Induction machines</subject><subject>Mechanical sensors</subject><subject>Neural networks</subject><subject>Sensorless control</subject><subject>Shafts</subject><subject>Voltage</subject><issn>0197-2618</issn><issn>2576-702X</issn><isbn>9781424412594</isbn><isbn>1424412595</isbn><isbn>9781424412600</isbn><isbn>1424412609</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNjEtPwzAQhM1LopReuXDJH0jZddaxfawqCpVacSgIblUeG2qU2FWcHvj3RIID0kgjzXwzQtwhzBHBPoBeL3ZzCaDnaNSZmFltkCQRyhzgXEyk0nmqQX5c_O-UpUsxAbQ6lTmaa3ET4xcAZCbHiXhfnIbgQxdOMdlx2yTL0HUuRhe885_JlodDqJMm9MnuyFyPjI-hbznGkfRDH9p2TNe-PlXDuEm2RXVwnuOtuGqKNvLsz6fibfX4unxONy9P6-VikzoENaRFyaphyrjmxta2ImVtaSgjC1hKS6gyqpXSPIobQoNsK9aUGzJ5yTKbivvfX8fM-2PvuqL_3o8H2maU_QBDFVZv</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>Wolbank, T.M.</creator><creator>Vogelsberger, M.A.</creator><creator>Stumberger, R.</creator><creator>Mohagheghi, S.</creator><creator>Habetler, T.G.</creator><creator>Harley, R.G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200709</creationdate><title>Autonomous Self Commissioning Method for Speed Sensorless Controlled Induction Machines</title><author>Wolbank, T.M. ; Vogelsberger, M.A. ; Stumberger, R. ; Mohagheghi, S. ; Habetler, T.G. ; Harley, R.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-abe5fe43edef9d9c4599b8434901b2941534d557e57eef4181e9ce7468486be23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Acceleration</topic><topic>Accelerometers</topic><topic>Anisotropic magnetoresistance</topic><topic>Frequency estimation</topic><topic>Induction machines</topic><topic>Mechanical sensors</topic><topic>Neural networks</topic><topic>Sensorless control</topic><topic>Shafts</topic><topic>Voltage</topic><toplevel>online_resources</toplevel><creatorcontrib>Wolbank, T.M.</creatorcontrib><creatorcontrib>Vogelsberger, M.A.</creatorcontrib><creatorcontrib>Stumberger, R.</creatorcontrib><creatorcontrib>Mohagheghi, S.</creatorcontrib><creatorcontrib>Habetler, T.G.</creatorcontrib><creatorcontrib>Harley, R.G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wolbank, T.M.</au><au>Vogelsberger, M.A.</au><au>Stumberger, R.</au><au>Mohagheghi, S.</au><au>Habetler, T.G.</au><au>Harley, R.G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Autonomous Self Commissioning Method for Speed Sensorless Controlled Induction Machines</atitle><btitle>2007 IEEE Industry Applications Annual Meeting</btitle><stitle>IAS</stitle><date>2007-09</date><risdate>2007</risdate><spage>1179</spage><epage>1185</epage><pages>1179-1185</pages><issn>0197-2618</issn><eissn>2576-702X</eissn><isbn>9781424412594</isbn><isbn>1424412595</isbn><eisbn>9781424412600</eisbn><eisbn>1424412609</eisbn><abstract>Speed sensorless control of ac machines at zero speed so far is only possible using signal injection methods. Especially when applied to induction machines the spatial saturation leads to a dependence of the resulting control signals on the flux/load level. Usually this dependence has to be identified on a special test stand during a commissioning procedure for each type of induction machine. In this paper an autonomous commissioning method based on a neural network approach is proposed that does neither depend on a speed sensor present as a reference nor on a load dynamometer coupled to the machine and guaranteeing constant speed. The training data for the neural network is obtained using only acceleration and deceleration measurements of the uncoupled machine. The reliability of the proposed autonomous commissioning method is proven by measurement results. When comparing the resulting sensorless control performance, the proposed commissioning method reaches the same level of performance as a manual identification using load dynamometer as well as speed sensor.</abstract><pub>IEEE</pub><doi>10.1109/07IAS.2007.185</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0197-2618 |
ispartof | 2007 IEEE Industry Applications Annual Meeting, 2007, p.1179-1185 |
issn | 0197-2618 2576-702X |
language | eng |
recordid | cdi_ieee_primary_4347934 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Acceleration Accelerometers Anisotropic magnetoresistance Frequency estimation Induction machines Mechanical sensors Neural networks Sensorless control Shafts Voltage |
title | Autonomous Self Commissioning Method for Speed Sensorless Controlled Induction Machines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T20%3A01%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Autonomous%20Self%20Commissioning%20Method%20for%20Speed%20Sensorless%20Controlled%20Induction%20Machines&rft.btitle=2007%20IEEE%20Industry%20Applications%20Annual%20Meeting&rft.au=Wolbank,%20T.M.&rft.date=2007-09&rft.spage=1179&rft.epage=1185&rft.pages=1179-1185&rft.issn=0197-2618&rft.eissn=2576-702X&rft.isbn=9781424412594&rft.isbn_list=1424412595&rft_id=info:doi/10.1109/07IAS.2007.185&rft_dat=%3Cieee_6IE%3E4347934%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424412600&rft.eisbn_list=1424412609&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4347934&rfr_iscdi=true |