Autonomous Self Commissioning Method for Speed Sensorless Controlled Induction Machines

Speed sensorless control of ac machines at zero speed so far is only possible using signal injection methods. Especially when applied to induction machines the spatial saturation leads to a dependence of the resulting control signals on the flux/load level. Usually this dependence has to be identifi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wolbank, T.M., Vogelsberger, M.A., Stumberger, R., Mohagheghi, S., Habetler, T.G., Harley, R.G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1185
container_issue
container_start_page 1179
container_title
container_volume
creator Wolbank, T.M.
Vogelsberger, M.A.
Stumberger, R.
Mohagheghi, S.
Habetler, T.G.
Harley, R.G.
description Speed sensorless control of ac machines at zero speed so far is only possible using signal injection methods. Especially when applied to induction machines the spatial saturation leads to a dependence of the resulting control signals on the flux/load level. Usually this dependence has to be identified on a special test stand during a commissioning procedure for each type of induction machine. In this paper an autonomous commissioning method based on a neural network approach is proposed that does neither depend on a speed sensor present as a reference nor on a load dynamometer coupled to the machine and guaranteeing constant speed. The training data for the neural network is obtained using only acceleration and deceleration measurements of the uncoupled machine. The reliability of the proposed autonomous commissioning method is proven by measurement results. When comparing the resulting sensorless control performance, the proposed commissioning method reaches the same level of performance as a manual identification using load dynamometer as well as speed sensor.
doi_str_mv 10.1109/07IAS.2007.185
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4347934</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4347934</ieee_id><sourcerecordid>4347934</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-abe5fe43edef9d9c4599b8434901b2941534d557e57eef4181e9ce7468486be23</originalsourceid><addsrcrecordid>eNpNjEtPwzAQhM1LopReuXDJH0jZddaxfawqCpVacSgIblUeG2qU2FWcHvj3RIID0kgjzXwzQtwhzBHBPoBeL3ZzCaDnaNSZmFltkCQRyhzgXEyk0nmqQX5c_O-UpUsxAbQ6lTmaa3ET4xcAZCbHiXhfnIbgQxdOMdlx2yTL0HUuRhe885_JlodDqJMm9MnuyFyPjI-hbznGkfRDH9p2TNe-PlXDuEm2RXVwnuOtuGqKNvLsz6fibfX4unxONy9P6-VikzoENaRFyaphyrjmxta2ImVtaSgjC1hKS6gyqpXSPIobQoNsK9aUGzJ5yTKbivvfX8fM-2PvuqL_3o8H2maU_QBDFVZv</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Autonomous Self Commissioning Method for Speed Sensorless Controlled Induction Machines</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wolbank, T.M. ; Vogelsberger, M.A. ; Stumberger, R. ; Mohagheghi, S. ; Habetler, T.G. ; Harley, R.G.</creator><creatorcontrib>Wolbank, T.M. ; Vogelsberger, M.A. ; Stumberger, R. ; Mohagheghi, S. ; Habetler, T.G. ; Harley, R.G.</creatorcontrib><description>Speed sensorless control of ac machines at zero speed so far is only possible using signal injection methods. Especially when applied to induction machines the spatial saturation leads to a dependence of the resulting control signals on the flux/load level. Usually this dependence has to be identified on a special test stand during a commissioning procedure for each type of induction machine. In this paper an autonomous commissioning method based on a neural network approach is proposed that does neither depend on a speed sensor present as a reference nor on a load dynamometer coupled to the machine and guaranteeing constant speed. The training data for the neural network is obtained using only acceleration and deceleration measurements of the uncoupled machine. The reliability of the proposed autonomous commissioning method is proven by measurement results. When comparing the resulting sensorless control performance, the proposed commissioning method reaches the same level of performance as a manual identification using load dynamometer as well as speed sensor.</description><identifier>ISSN: 0197-2618</identifier><identifier>ISBN: 9781424412594</identifier><identifier>ISBN: 1424412595</identifier><identifier>EISSN: 2576-702X</identifier><identifier>EISBN: 9781424412600</identifier><identifier>EISBN: 1424412609</identifier><identifier>DOI: 10.1109/07IAS.2007.185</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; Accelerometers ; Anisotropic magnetoresistance ; Frequency estimation ; Induction machines ; Mechanical sensors ; Neural networks ; Sensorless control ; Shafts ; Voltage</subject><ispartof>2007 IEEE Industry Applications Annual Meeting, 2007, p.1179-1185</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4347934$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,782,786,791,792,2060,27932,54927</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4347934$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wolbank, T.M.</creatorcontrib><creatorcontrib>Vogelsberger, M.A.</creatorcontrib><creatorcontrib>Stumberger, R.</creatorcontrib><creatorcontrib>Mohagheghi, S.</creatorcontrib><creatorcontrib>Habetler, T.G.</creatorcontrib><creatorcontrib>Harley, R.G.</creatorcontrib><title>Autonomous Self Commissioning Method for Speed Sensorless Controlled Induction Machines</title><title>2007 IEEE Industry Applications Annual Meeting</title><addtitle>IAS</addtitle><description>Speed sensorless control of ac machines at zero speed so far is only possible using signal injection methods. Especially when applied to induction machines the spatial saturation leads to a dependence of the resulting control signals on the flux/load level. Usually this dependence has to be identified on a special test stand during a commissioning procedure for each type of induction machine. In this paper an autonomous commissioning method based on a neural network approach is proposed that does neither depend on a speed sensor present as a reference nor on a load dynamometer coupled to the machine and guaranteeing constant speed. The training data for the neural network is obtained using only acceleration and deceleration measurements of the uncoupled machine. The reliability of the proposed autonomous commissioning method is proven by measurement results. When comparing the resulting sensorless control performance, the proposed commissioning method reaches the same level of performance as a manual identification using load dynamometer as well as speed sensor.</description><subject>Acceleration</subject><subject>Accelerometers</subject><subject>Anisotropic magnetoresistance</subject><subject>Frequency estimation</subject><subject>Induction machines</subject><subject>Mechanical sensors</subject><subject>Neural networks</subject><subject>Sensorless control</subject><subject>Shafts</subject><subject>Voltage</subject><issn>0197-2618</issn><issn>2576-702X</issn><isbn>9781424412594</isbn><isbn>1424412595</isbn><isbn>9781424412600</isbn><isbn>1424412609</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNjEtPwzAQhM1LopReuXDJH0jZddaxfawqCpVacSgIblUeG2qU2FWcHvj3RIID0kgjzXwzQtwhzBHBPoBeL3ZzCaDnaNSZmFltkCQRyhzgXEyk0nmqQX5c_O-UpUsxAbQ6lTmaa3ET4xcAZCbHiXhfnIbgQxdOMdlx2yTL0HUuRhe885_JlodDqJMm9MnuyFyPjI-hbznGkfRDH9p2TNe-PlXDuEm2RXVwnuOtuGqKNvLsz6fibfX4unxONy9P6-VikzoENaRFyaphyrjmxta2ImVtaSgjC1hKS6gyqpXSPIobQoNsK9aUGzJ5yTKbivvfX8fM-2PvuqL_3o8H2maU_QBDFVZv</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>Wolbank, T.M.</creator><creator>Vogelsberger, M.A.</creator><creator>Stumberger, R.</creator><creator>Mohagheghi, S.</creator><creator>Habetler, T.G.</creator><creator>Harley, R.G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200709</creationdate><title>Autonomous Self Commissioning Method for Speed Sensorless Controlled Induction Machines</title><author>Wolbank, T.M. ; Vogelsberger, M.A. ; Stumberger, R. ; Mohagheghi, S. ; Habetler, T.G. ; Harley, R.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-abe5fe43edef9d9c4599b8434901b2941534d557e57eef4181e9ce7468486be23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Acceleration</topic><topic>Accelerometers</topic><topic>Anisotropic magnetoresistance</topic><topic>Frequency estimation</topic><topic>Induction machines</topic><topic>Mechanical sensors</topic><topic>Neural networks</topic><topic>Sensorless control</topic><topic>Shafts</topic><topic>Voltage</topic><toplevel>online_resources</toplevel><creatorcontrib>Wolbank, T.M.</creatorcontrib><creatorcontrib>Vogelsberger, M.A.</creatorcontrib><creatorcontrib>Stumberger, R.</creatorcontrib><creatorcontrib>Mohagheghi, S.</creatorcontrib><creatorcontrib>Habetler, T.G.</creatorcontrib><creatorcontrib>Harley, R.G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wolbank, T.M.</au><au>Vogelsberger, M.A.</au><au>Stumberger, R.</au><au>Mohagheghi, S.</au><au>Habetler, T.G.</au><au>Harley, R.G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Autonomous Self Commissioning Method for Speed Sensorless Controlled Induction Machines</atitle><btitle>2007 IEEE Industry Applications Annual Meeting</btitle><stitle>IAS</stitle><date>2007-09</date><risdate>2007</risdate><spage>1179</spage><epage>1185</epage><pages>1179-1185</pages><issn>0197-2618</issn><eissn>2576-702X</eissn><isbn>9781424412594</isbn><isbn>1424412595</isbn><eisbn>9781424412600</eisbn><eisbn>1424412609</eisbn><abstract>Speed sensorless control of ac machines at zero speed so far is only possible using signal injection methods. Especially when applied to induction machines the spatial saturation leads to a dependence of the resulting control signals on the flux/load level. Usually this dependence has to be identified on a special test stand during a commissioning procedure for each type of induction machine. In this paper an autonomous commissioning method based on a neural network approach is proposed that does neither depend on a speed sensor present as a reference nor on a load dynamometer coupled to the machine and guaranteeing constant speed. The training data for the neural network is obtained using only acceleration and deceleration measurements of the uncoupled machine. The reliability of the proposed autonomous commissioning method is proven by measurement results. When comparing the resulting sensorless control performance, the proposed commissioning method reaches the same level of performance as a manual identification using load dynamometer as well as speed sensor.</abstract><pub>IEEE</pub><doi>10.1109/07IAS.2007.185</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0197-2618
ispartof 2007 IEEE Industry Applications Annual Meeting, 2007, p.1179-1185
issn 0197-2618
2576-702X
language eng
recordid cdi_ieee_primary_4347934
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Acceleration
Accelerometers
Anisotropic magnetoresistance
Frequency estimation
Induction machines
Mechanical sensors
Neural networks
Sensorless control
Shafts
Voltage
title Autonomous Self Commissioning Method for Speed Sensorless Controlled Induction Machines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T20%3A01%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Autonomous%20Self%20Commissioning%20Method%20for%20Speed%20Sensorless%20Controlled%20Induction%20Machines&rft.btitle=2007%20IEEE%20Industry%20Applications%20Annual%20Meeting&rft.au=Wolbank,%20T.M.&rft.date=2007-09&rft.spage=1179&rft.epage=1185&rft.pages=1179-1185&rft.issn=0197-2618&rft.eissn=2576-702X&rft.isbn=9781424412594&rft.isbn_list=1424412595&rft_id=info:doi/10.1109/07IAS.2007.185&rft_dat=%3Cieee_6IE%3E4347934%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424412600&rft.eisbn_list=1424412609&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4347934&rfr_iscdi=true