An Improved General Particle Swarm Optimization Algorithm for Fast Infrared Image Segmentation

The method of infrared image segmentation based on 2-D maximum fuzzy partition entropy is a typical integer programming problem with huge searching space and many local optima. In order to realize fast infrared image segmentation, an improved general particle swarm optimization algorithm is proposed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ni Chao, Li Qi, Xia Liangzheng
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 562
container_issue
container_start_page 558
container_title
container_volume
creator Ni Chao
Li Qi
Xia Liangzheng
description The method of infrared image segmentation based on 2-D maximum fuzzy partition entropy is a typical integer programming problem with huge searching space and many local optima. In order to realize fast infrared image segmentation, an improved general particle swarm optimization algorithm is proposed. The algorithm is based on general particle swarm optimization, and it makes use of adaptive balance searching strategy. When the evolution stops, simulated annealing algorithm is introduced to select the current global optimum to be chaotic optimized for the sake of enhancing local searching ability and overcoming premature convergence. Experiment shows that the algorithm can get segmentation parameters quickly and accurately to realize fast infrared image segmentation.
doi_str_mv 10.1109/CHICC.2006.4347264
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4347264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4347264</ieee_id><sourcerecordid>4347264</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-47c7ffea865c51f7d49015c359bc97563823cf5c796f526853842670ae1b33343</originalsourceid><addsrcrecordid>eNot0M1OAjEcBPAaNRGQF9BLX2Cx_373SDYCm5Bgol4lpbRYs90l3UajTy9RTnOZ3xwGoTsgMwBiHupVU9czSoicccYVlfwCjZUhRIGh1FyiqVFaaQDKiRDmCo3AMF6BkvoGjYfh4ySJATZCb_MON-mY-0-_x0vf-Wxb_GRzia71-PnL5oQ3xxJT_LEl9h2et4c-x_KecOgzXtih4KYL2eaTb5I9nJA_JN-Vv_otug62Hfz0nBP0unh8qVfVerNs6vm6iqBEqbhyKgRvtRROQFB7bggIx4TZOaOEZJoyF4RTRgZBpRZMcyoVsR52jDHOJuj-fzd677fHHJPN39vzN-wXKgNVuA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An Improved General Particle Swarm Optimization Algorithm for Fast Infrared Image Segmentation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ni Chao ; Li Qi ; Xia Liangzheng</creator><creatorcontrib>Ni Chao ; Li Qi ; Xia Liangzheng</creatorcontrib><description>The method of infrared image segmentation based on 2-D maximum fuzzy partition entropy is a typical integer programming problem with huge searching space and many local optima. In order to realize fast infrared image segmentation, an improved general particle swarm optimization algorithm is proposed. The algorithm is based on general particle swarm optimization, and it makes use of adaptive balance searching strategy. When the evolution stops, simulated annealing algorithm is introduced to select the current global optimum to be chaotic optimized for the sake of enhancing local searching ability and overcoming premature convergence. Experiment shows that the algorithm can get segmentation parameters quickly and accurately to realize fast infrared image segmentation.</description><identifier>ISSN: 1934-1768</identifier><identifier>ISBN: 9787811240559</identifier><identifier>ISBN: 7811240556</identifier><identifier>EISBN: 7900719229</identifier><identifier>EISBN: 9787900719225</identifier><identifier>DOI: 10.1109/CHICC.2006.4347264</identifier><language>eng</language><publisher>IEEE</publisher><subject>2-D Maximum Fuzzy Partition Entropy ; Chaos ; Chaotic Optimization ; Convergence ; Entropy ; General Particle Swarm optimization ; Histograms ; Image segmentation ; Infrared Image Segmentation ; Infrared imaging ; Linear programming ; Particle swarm optimization ; Partitioning algorithms ; Simulated annealing</subject><ispartof>2007 Chinese Control Conference, 2007, p.558-562</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4347264$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4347264$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ni Chao</creatorcontrib><creatorcontrib>Li Qi</creatorcontrib><creatorcontrib>Xia Liangzheng</creatorcontrib><title>An Improved General Particle Swarm Optimization Algorithm for Fast Infrared Image Segmentation</title><title>2007 Chinese Control Conference</title><addtitle>CHICC</addtitle><description>The method of infrared image segmentation based on 2-D maximum fuzzy partition entropy is a typical integer programming problem with huge searching space and many local optima. In order to realize fast infrared image segmentation, an improved general particle swarm optimization algorithm is proposed. The algorithm is based on general particle swarm optimization, and it makes use of adaptive balance searching strategy. When the evolution stops, simulated annealing algorithm is introduced to select the current global optimum to be chaotic optimized for the sake of enhancing local searching ability and overcoming premature convergence. Experiment shows that the algorithm can get segmentation parameters quickly and accurately to realize fast infrared image segmentation.</description><subject>2-D Maximum Fuzzy Partition Entropy</subject><subject>Chaos</subject><subject>Chaotic Optimization</subject><subject>Convergence</subject><subject>Entropy</subject><subject>General Particle Swarm optimization</subject><subject>Histograms</subject><subject>Image segmentation</subject><subject>Infrared Image Segmentation</subject><subject>Infrared imaging</subject><subject>Linear programming</subject><subject>Particle swarm optimization</subject><subject>Partitioning algorithms</subject><subject>Simulated annealing</subject><issn>1934-1768</issn><isbn>9787811240559</isbn><isbn>7811240556</isbn><isbn>7900719229</isbn><isbn>9787900719225</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNot0M1OAjEcBPAaNRGQF9BLX2Cx_373SDYCm5Bgol4lpbRYs90l3UajTy9RTnOZ3xwGoTsgMwBiHupVU9czSoicccYVlfwCjZUhRIGh1FyiqVFaaQDKiRDmCo3AMF6BkvoGjYfh4ySJATZCb_MON-mY-0-_x0vf-Wxb_GRzia71-PnL5oQ3xxJT_LEl9h2et4c-x_KecOgzXtih4KYL2eaTb5I9nJA_JN-Vv_otug62Hfz0nBP0unh8qVfVerNs6vm6iqBEqbhyKgRvtRROQFB7bggIx4TZOaOEZJoyF4RTRgZBpRZMcyoVsR52jDHOJuj-fzd677fHHJPN39vzN-wXKgNVuA</recordid><startdate>200707</startdate><enddate>200707</enddate><creator>Ni Chao</creator><creator>Li Qi</creator><creator>Xia Liangzheng</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200707</creationdate><title>An Improved General Particle Swarm Optimization Algorithm for Fast Infrared Image Segmentation</title><author>Ni Chao ; Li Qi ; Xia Liangzheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-47c7ffea865c51f7d49015c359bc97563823cf5c796f526853842670ae1b33343</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>2-D Maximum Fuzzy Partition Entropy</topic><topic>Chaos</topic><topic>Chaotic Optimization</topic><topic>Convergence</topic><topic>Entropy</topic><topic>General Particle Swarm optimization</topic><topic>Histograms</topic><topic>Image segmentation</topic><topic>Infrared Image Segmentation</topic><topic>Infrared imaging</topic><topic>Linear programming</topic><topic>Particle swarm optimization</topic><topic>Partitioning algorithms</topic><topic>Simulated annealing</topic><toplevel>online_resources</toplevel><creatorcontrib>Ni Chao</creatorcontrib><creatorcontrib>Li Qi</creatorcontrib><creatorcontrib>Xia Liangzheng</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ni Chao</au><au>Li Qi</au><au>Xia Liangzheng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An Improved General Particle Swarm Optimization Algorithm for Fast Infrared Image Segmentation</atitle><btitle>2007 Chinese Control Conference</btitle><stitle>CHICC</stitle><date>2007-07</date><risdate>2007</risdate><spage>558</spage><epage>562</epage><pages>558-562</pages><issn>1934-1768</issn><isbn>9787811240559</isbn><isbn>7811240556</isbn><eisbn>7900719229</eisbn><eisbn>9787900719225</eisbn><abstract>The method of infrared image segmentation based on 2-D maximum fuzzy partition entropy is a typical integer programming problem with huge searching space and many local optima. In order to realize fast infrared image segmentation, an improved general particle swarm optimization algorithm is proposed. The algorithm is based on general particle swarm optimization, and it makes use of adaptive balance searching strategy. When the evolution stops, simulated annealing algorithm is introduced to select the current global optimum to be chaotic optimized for the sake of enhancing local searching ability and overcoming premature convergence. Experiment shows that the algorithm can get segmentation parameters quickly and accurately to realize fast infrared image segmentation.</abstract><pub>IEEE</pub><doi>10.1109/CHICC.2006.4347264</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1934-1768
ispartof 2007 Chinese Control Conference, 2007, p.558-562
issn 1934-1768
language eng
recordid cdi_ieee_primary_4347264
source IEEE Electronic Library (IEL) Conference Proceedings
subjects 2-D Maximum Fuzzy Partition Entropy
Chaos
Chaotic Optimization
Convergence
Entropy
General Particle Swarm optimization
Histograms
Image segmentation
Infrared Image Segmentation
Infrared imaging
Linear programming
Particle swarm optimization
Partitioning algorithms
Simulated annealing
title An Improved General Particle Swarm Optimization Algorithm for Fast Infrared Image Segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A23%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20Improved%20General%20Particle%20Swarm%20Optimization%20Algorithm%20for%20Fast%20Infrared%20Image%20Segmentation&rft.btitle=2007%20Chinese%20Control%20Conference&rft.au=Ni%20Chao&rft.date=2007-07&rft.spage=558&rft.epage=562&rft.pages=558-562&rft.issn=1934-1768&rft.isbn=9787811240559&rft.isbn_list=7811240556&rft_id=info:doi/10.1109/CHICC.2006.4347264&rft_dat=%3Cieee_6IE%3E4347264%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=7900719229&rft.eisbn_list=9787900719225&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4347264&rfr_iscdi=true