A Continuous Gaussian Mixture HMM Based Acoustic Fault Diagnosis Scheme for Bearings
Plentiful significant information about the operation status of bearings, which is potential for the fault diagnose after processed properly, is contained in their acoustic signals. In this paper, a new fault diagnosis scheme using acoustic signals is proposed for the bearings by introducing continu...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 476 |
---|---|
container_issue | |
container_start_page | 473 |
container_title | |
container_volume | |
creator | Lu Ruhua Yang Shengyue Fan Xiaoping |
description | Plentiful significant information about the operation status of bearings, which is potential for the fault diagnose after processed properly, is contained in their acoustic signals. In this paper, a new fault diagnosis scheme using acoustic signals is proposed for the bearings by introducing continuous Gaussian mixture hidden Markov model (CGHMM) method, in which the data processing error due to vector quantization is avoided, and therefore the diagnosis precision is improved. Besides, a clustering algorithm and a scaled coefficient algorithm are introduced for parameters initiation and the forward and backward algorithms to simplify the complexity in the computation and improve the training and recognizing speed and diagnosis precision. At last, experiment results of a diagnosis precision achieved to 98.75% demonstrated the feasibility and potential for applications of the presented scheme. |
doi_str_mv | 10.1109/CHICC.2006.4347084 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4347084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4347084</ieee_id><sourcerecordid>4347084</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-618d772f4cd25681652eddfff93dbf57a7f1793265e75d9ee248ec3bd7e9266a3</originalsourceid><addsrcrecordid>eNotkMtOAjEYRmvUREBeQDd9gcH-vXcJI7cE4kJckzL9izUwY6Yzib69JLL6NuecxUfIE7AJAHMv5WpdlhPOmJ5IIQ2z8oYMjWPMgOPc3ZKxM9ZYAC6ZUu6ODMAJWYDR9oEMc_66mMyBGJDdlJZN3aW6b_pMl77POfmabtNP17dIV9stnfmMgU6rC9Clii58f-roa_LHuskp0_fqE89IY9PSGfo21cf8SO6jP2UcX3dEPhbzXbkqNm_LdTndFAmY6goNNhjDo6wCV9qCVhxDiDE6EQ5RGW8iGCe4VmhUcIhcWqzEIRh0XGsvRuT5v5sQcf_dprNvf_fXR8QfC05Slg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Continuous Gaussian Mixture HMM Based Acoustic Fault Diagnosis Scheme for Bearings</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lu Ruhua ; Yang Shengyue ; Fan Xiaoping</creator><creatorcontrib>Lu Ruhua ; Yang Shengyue ; Fan Xiaoping</creatorcontrib><description>Plentiful significant information about the operation status of bearings, which is potential for the fault diagnose after processed properly, is contained in their acoustic signals. In this paper, a new fault diagnosis scheme using acoustic signals is proposed for the bearings by introducing continuous Gaussian mixture hidden Markov model (CGHMM) method, in which the data processing error due to vector quantization is avoided, and therefore the diagnosis precision is improved. Besides, a clustering algorithm and a scaled coefficient algorithm are introduced for parameters initiation and the forward and backward algorithms to simplify the complexity in the computation and improve the training and recognizing speed and diagnosis precision. At last, experiment results of a diagnosis precision achieved to 98.75% demonstrated the feasibility and potential for applications of the presented scheme.</description><identifier>ISSN: 1934-1768</identifier><identifier>ISBN: 9787811240559</identifier><identifier>ISBN: 7811240556</identifier><identifier>EISBN: 7900719229</identifier><identifier>EISBN: 9787900719225</identifier><identifier>DOI: 10.1109/CHICC.2006.4347084</identifier><language>chi ; eng</language><publisher>IEEE</publisher><subject>acoustic signal ; Acoustical engineering ; bearing ; CGHMM ; Clustering algorithms ; Data processing ; Fault diagnosis ; Hidden Markov models ; Information science ; Signal processing ; Vector quantization</subject><ispartof>2007 Chinese Control Conference, 2007, p.473-476</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4347084$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4347084$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lu Ruhua</creatorcontrib><creatorcontrib>Yang Shengyue</creatorcontrib><creatorcontrib>Fan Xiaoping</creatorcontrib><title>A Continuous Gaussian Mixture HMM Based Acoustic Fault Diagnosis Scheme for Bearings</title><title>2007 Chinese Control Conference</title><addtitle>CHICC</addtitle><description>Plentiful significant information about the operation status of bearings, which is potential for the fault diagnose after processed properly, is contained in their acoustic signals. In this paper, a new fault diagnosis scheme using acoustic signals is proposed for the bearings by introducing continuous Gaussian mixture hidden Markov model (CGHMM) method, in which the data processing error due to vector quantization is avoided, and therefore the diagnosis precision is improved. Besides, a clustering algorithm and a scaled coefficient algorithm are introduced for parameters initiation and the forward and backward algorithms to simplify the complexity in the computation and improve the training and recognizing speed and diagnosis precision. At last, experiment results of a diagnosis precision achieved to 98.75% demonstrated the feasibility and potential for applications of the presented scheme.</description><subject>acoustic signal</subject><subject>Acoustical engineering</subject><subject>bearing</subject><subject>CGHMM</subject><subject>Clustering algorithms</subject><subject>Data processing</subject><subject>Fault diagnosis</subject><subject>Hidden Markov models</subject><subject>Information science</subject><subject>Signal processing</subject><subject>Vector quantization</subject><issn>1934-1768</issn><isbn>9787811240559</isbn><isbn>7811240556</isbn><isbn>7900719229</isbn><isbn>9787900719225</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkMtOAjEYRmvUREBeQDd9gcH-vXcJI7cE4kJckzL9izUwY6Yzib69JLL6NuecxUfIE7AJAHMv5WpdlhPOmJ5IIQ2z8oYMjWPMgOPc3ZKxM9ZYAC6ZUu6ODMAJWYDR9oEMc_66mMyBGJDdlJZN3aW6b_pMl77POfmabtNP17dIV9stnfmMgU6rC9Clii58f-roa_LHuskp0_fqE89IY9PSGfo21cf8SO6jP2UcX3dEPhbzXbkqNm_LdTndFAmY6goNNhjDo6wCV9qCVhxDiDE6EQ5RGW8iGCe4VmhUcIhcWqzEIRh0XGsvRuT5v5sQcf_dprNvf_fXR8QfC05Slg</recordid><startdate>200707</startdate><enddate>200707</enddate><creator>Lu Ruhua</creator><creator>Yang Shengyue</creator><creator>Fan Xiaoping</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200707</creationdate><title>A Continuous Gaussian Mixture HMM Based Acoustic Fault Diagnosis Scheme for Bearings</title><author>Lu Ruhua ; Yang Shengyue ; Fan Xiaoping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-618d772f4cd25681652eddfff93dbf57a7f1793265e75d9ee248ec3bd7e9266a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>chi ; eng</language><creationdate>2007</creationdate><topic>acoustic signal</topic><topic>Acoustical engineering</topic><topic>bearing</topic><topic>CGHMM</topic><topic>Clustering algorithms</topic><topic>Data processing</topic><topic>Fault diagnosis</topic><topic>Hidden Markov models</topic><topic>Information science</topic><topic>Signal processing</topic><topic>Vector quantization</topic><toplevel>online_resources</toplevel><creatorcontrib>Lu Ruhua</creatorcontrib><creatorcontrib>Yang Shengyue</creatorcontrib><creatorcontrib>Fan Xiaoping</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lu Ruhua</au><au>Yang Shengyue</au><au>Fan Xiaoping</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Continuous Gaussian Mixture HMM Based Acoustic Fault Diagnosis Scheme for Bearings</atitle><btitle>2007 Chinese Control Conference</btitle><stitle>CHICC</stitle><date>2007-07</date><risdate>2007</risdate><spage>473</spage><epage>476</epage><pages>473-476</pages><issn>1934-1768</issn><isbn>9787811240559</isbn><isbn>7811240556</isbn><eisbn>7900719229</eisbn><eisbn>9787900719225</eisbn><abstract>Plentiful significant information about the operation status of bearings, which is potential for the fault diagnose after processed properly, is contained in their acoustic signals. In this paper, a new fault diagnosis scheme using acoustic signals is proposed for the bearings by introducing continuous Gaussian mixture hidden Markov model (CGHMM) method, in which the data processing error due to vector quantization is avoided, and therefore the diagnosis precision is improved. Besides, a clustering algorithm and a scaled coefficient algorithm are introduced for parameters initiation and the forward and backward algorithms to simplify the complexity in the computation and improve the training and recognizing speed and diagnosis precision. At last, experiment results of a diagnosis precision achieved to 98.75% demonstrated the feasibility and potential for applications of the presented scheme.</abstract><pub>IEEE</pub><doi>10.1109/CHICC.2006.4347084</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1934-1768 |
ispartof | 2007 Chinese Control Conference, 2007, p.473-476 |
issn | 1934-1768 |
language | chi ; eng |
recordid | cdi_ieee_primary_4347084 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | acoustic signal Acoustical engineering bearing CGHMM Clustering algorithms Data processing Fault diagnosis Hidden Markov models Information science Signal processing Vector quantization |
title | A Continuous Gaussian Mixture HMM Based Acoustic Fault Diagnosis Scheme for Bearings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A11%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Continuous%20Gaussian%20Mixture%20HMM%20Based%20Acoustic%20Fault%20Diagnosis%20Scheme%20for%20Bearings&rft.btitle=2007%20Chinese%20Control%20Conference&rft.au=Lu%20Ruhua&rft.date=2007-07&rft.spage=473&rft.epage=476&rft.pages=473-476&rft.issn=1934-1768&rft.isbn=9787811240559&rft.isbn_list=7811240556&rft_id=info:doi/10.1109/CHICC.2006.4347084&rft_dat=%3Cieee_6IE%3E4347084%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=7900719229&rft.eisbn_list=9787900719225&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4347084&rfr_iscdi=true |