Microfabricated THz-regime Waveguides

Summary form only given. Vacuum electronic sources of THz regime (0.1-10 THz) radiation will require advanced methods to precisely fabricate miniature waveguides. We are exploring the design and fabrication of THz-regime waveguides using bulk silicon-based microfabrication, specifically, deep reacti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sengele, Sean, Yang, Benjamin, Marconnet, Amy, Dias, Neville, Willis, Keely, Jiang, Hongrui, Knezevic, Irena, Booske, John, Hagness, Susan, van der Weide, Daniel, Ferrier, Nicola, Bettermann, Alan, Limbach, Steve
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 648
container_issue
container_start_page 648
container_title
container_volume
creator Sengele, Sean
Yang, Benjamin
Marconnet, Amy
Dias, Neville
Willis, Keely
Jiang, Hongrui
Knezevic, Irena
Booske, John
Hagness, Susan
van der Weide, Daniel
Ferrier, Nicola
Bettermann, Alan
Limbach, Steve
description Summary form only given. Vacuum electronic sources of THz regime (0.1-10 THz) radiation will require advanced methods to precisely fabricate miniature waveguides. We are exploring the design and fabrication of THz-regime waveguides using bulk silicon-based microfabrication, specifically, deep reactive ion etching. Due to the waveguide's dimensions it is advantageous to fabricate it in halves on two separate silicon wafers. Final assembly consists of metallizing the halves and thermocompressively bonding them together. Finding an appropriate diffusion barrier and bonding technique is vital to the success of this design and has recently been our primary focus. Along with the development of THz-regime waveguides, we are exploring a novel coupling technique that consists of a tapered silicon tip, made by wet chemical etching. These silicon tips, fabricated from square silicon rods approximately the size of the waveguide, can be fabricated with a tolerance of less than one micron by monitoring the electrolytic current in the etchant bath and controlling the submersion depth of the silicon rod via robotic controls. In conjunction with the development of the waveguides and couplers, we are also investigating how THz regime radiation interacts with metallic thin films. We are developing computational models to predict effective RF conductivity of metallic thin films at THz frequencies, including the effects of surface roughness scattering at the interfaces. Experimentally, our micro fabricated THz-regime waveguides provide us with an excellent platform for validating the model. By measuring the throughput power for different lengths of waveguide, we can determine the ohmic loss per unit length. This presentation will discuss the latest developments in all of these research efforts namely the fabrication of THz regime waveguides, coupling techniques and our investigation into electron transport in metallic thin films at THz frequencies.
doi_str_mv 10.1109/PPPS.2007.4345954
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4345954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4345954</ieee_id><sourcerecordid>4345954</sourcerecordid><originalsourceid>FETCH-ieee_primary_43459543</originalsourceid><addsrcrecordid>eNp9jr0KwjAURi_-gEX7AOLSxTH1pr0xzSxKF6FgwVGivZWIoqQq6NPbobPfcuCc5QOYSoylRLMoimIXJ4g6ppSUUdSDIFF6KXSCWR9CozNJCREaqXAAAeoUhWnFEIJMiiVRKtUIwqa5YDtSJMkEMN-6k7_X9ujdyT65isr8Kzyf3Y2jvX3z-eUqbiYwrO214bDjGGabdbnKhWPmw8O7m_WfQ3cs_V9_ZoA1EA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Microfabricated THz-regime Waveguides</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sengele, Sean ; Yang, Benjamin ; Marconnet, Amy ; Dias, Neville ; Willis, Keely ; Jiang, Hongrui ; Knezevic, Irena ; Booske, John ; Hagness, Susan ; van der Weide, Daniel ; Ferrier, Nicola ; Bettermann, Alan ; Limbach, Steve</creator><creatorcontrib>Sengele, Sean ; Yang, Benjamin ; Marconnet, Amy ; Dias, Neville ; Willis, Keely ; Jiang, Hongrui ; Knezevic, Irena ; Booske, John ; Hagness, Susan ; van der Weide, Daniel ; Ferrier, Nicola ; Bettermann, Alan ; Limbach, Steve</creatorcontrib><description>Summary form only given. Vacuum electronic sources of THz regime (0.1-10 THz) radiation will require advanced methods to precisely fabricate miniature waveguides. We are exploring the design and fabrication of THz-regime waveguides using bulk silicon-based microfabrication, specifically, deep reactive ion etching. Due to the waveguide's dimensions it is advantageous to fabricate it in halves on two separate silicon wafers. Final assembly consists of metallizing the halves and thermocompressively bonding them together. Finding an appropriate diffusion barrier and bonding technique is vital to the success of this design and has recently been our primary focus. Along with the development of THz-regime waveguides, we are exploring a novel coupling technique that consists of a tapered silicon tip, made by wet chemical etching. These silicon tips, fabricated from square silicon rods approximately the size of the waveguide, can be fabricated with a tolerance of less than one micron by monitoring the electrolytic current in the etchant bath and controlling the submersion depth of the silicon rod via robotic controls. In conjunction with the development of the waveguides and couplers, we are also investigating how THz regime radiation interacts with metallic thin films. We are developing computational models to predict effective RF conductivity of metallic thin films at THz frequencies, including the effects of surface roughness scattering at the interfaces. Experimentally, our micro fabricated THz-regime waveguides provide us with an excellent platform for validating the model. By measuring the throughput power for different lengths of waveguide, we can determine the ohmic loss per unit length. This presentation will discuss the latest developments in all of these research efforts namely the fabrication of THz regime waveguides, coupling techniques and our investigation into electron transport in metallic thin films at THz frequencies.</description><identifier>ISSN: 0730-9244</identifier><identifier>ISBN: 9781424409150</identifier><identifier>ISBN: 1424409152</identifier><identifier>EISSN: 2576-7208</identifier><identifier>DOI: 10.1109/PPPS.2007.4345954</identifier><identifier>LCCN: 81-644315</identifier><language>eng</language><publisher>IEEE</publisher><subject>Assembly ; Diffusion bonding ; Etching ; Frequency ; Metallization ; Optical device fabrication ; Silicon ; Size control ; Transistors ; Wafer bonding</subject><ispartof>2007 IEEE 34th International Conference on Plasma Science (ICOPS), 2007, p.648-648</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4345954$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4345954$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sengele, Sean</creatorcontrib><creatorcontrib>Yang, Benjamin</creatorcontrib><creatorcontrib>Marconnet, Amy</creatorcontrib><creatorcontrib>Dias, Neville</creatorcontrib><creatorcontrib>Willis, Keely</creatorcontrib><creatorcontrib>Jiang, Hongrui</creatorcontrib><creatorcontrib>Knezevic, Irena</creatorcontrib><creatorcontrib>Booske, John</creatorcontrib><creatorcontrib>Hagness, Susan</creatorcontrib><creatorcontrib>van der Weide, Daniel</creatorcontrib><creatorcontrib>Ferrier, Nicola</creatorcontrib><creatorcontrib>Bettermann, Alan</creatorcontrib><creatorcontrib>Limbach, Steve</creatorcontrib><title>Microfabricated THz-regime Waveguides</title><title>2007 IEEE 34th International Conference on Plasma Science (ICOPS)</title><addtitle>PLASMA</addtitle><description>Summary form only given. Vacuum electronic sources of THz regime (0.1-10 THz) radiation will require advanced methods to precisely fabricate miniature waveguides. We are exploring the design and fabrication of THz-regime waveguides using bulk silicon-based microfabrication, specifically, deep reactive ion etching. Due to the waveguide's dimensions it is advantageous to fabricate it in halves on two separate silicon wafers. Final assembly consists of metallizing the halves and thermocompressively bonding them together. Finding an appropriate diffusion barrier and bonding technique is vital to the success of this design and has recently been our primary focus. Along with the development of THz-regime waveguides, we are exploring a novel coupling technique that consists of a tapered silicon tip, made by wet chemical etching. These silicon tips, fabricated from square silicon rods approximately the size of the waveguide, can be fabricated with a tolerance of less than one micron by monitoring the electrolytic current in the etchant bath and controlling the submersion depth of the silicon rod via robotic controls. In conjunction with the development of the waveguides and couplers, we are also investigating how THz regime radiation interacts with metallic thin films. We are developing computational models to predict effective RF conductivity of metallic thin films at THz frequencies, including the effects of surface roughness scattering at the interfaces. Experimentally, our micro fabricated THz-regime waveguides provide us with an excellent platform for validating the model. By measuring the throughput power for different lengths of waveguide, we can determine the ohmic loss per unit length. This presentation will discuss the latest developments in all of these research efforts namely the fabrication of THz regime waveguides, coupling techniques and our investigation into electron transport in metallic thin films at THz frequencies.</description><subject>Assembly</subject><subject>Diffusion bonding</subject><subject>Etching</subject><subject>Frequency</subject><subject>Metallization</subject><subject>Optical device fabrication</subject><subject>Silicon</subject><subject>Size control</subject><subject>Transistors</subject><subject>Wafer bonding</subject><issn>0730-9244</issn><issn>2576-7208</issn><isbn>9781424409150</isbn><isbn>1424409152</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9jr0KwjAURi_-gEX7AOLSxTH1pr0xzSxKF6FgwVGivZWIoqQq6NPbobPfcuCc5QOYSoylRLMoimIXJ4g6ppSUUdSDIFF6KXSCWR9CozNJCREaqXAAAeoUhWnFEIJMiiVRKtUIwqa5YDtSJMkEMN-6k7_X9ujdyT65isr8Kzyf3Y2jvX3z-eUqbiYwrO214bDjGGabdbnKhWPmw8O7m_WfQ3cs_V9_ZoA1EA</recordid><startdate>200706</startdate><enddate>200706</enddate><creator>Sengele, Sean</creator><creator>Yang, Benjamin</creator><creator>Marconnet, Amy</creator><creator>Dias, Neville</creator><creator>Willis, Keely</creator><creator>Jiang, Hongrui</creator><creator>Knezevic, Irena</creator><creator>Booske, John</creator><creator>Hagness, Susan</creator><creator>van der Weide, Daniel</creator><creator>Ferrier, Nicola</creator><creator>Bettermann, Alan</creator><creator>Limbach, Steve</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200706</creationdate><title>Microfabricated THz-regime Waveguides</title><author>Sengele, Sean ; Yang, Benjamin ; Marconnet, Amy ; Dias, Neville ; Willis, Keely ; Jiang, Hongrui ; Knezevic, Irena ; Booske, John ; Hagness, Susan ; van der Weide, Daniel ; Ferrier, Nicola ; Bettermann, Alan ; Limbach, Steve</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_43459543</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Assembly</topic><topic>Diffusion bonding</topic><topic>Etching</topic><topic>Frequency</topic><topic>Metallization</topic><topic>Optical device fabrication</topic><topic>Silicon</topic><topic>Size control</topic><topic>Transistors</topic><topic>Wafer bonding</topic><toplevel>online_resources</toplevel><creatorcontrib>Sengele, Sean</creatorcontrib><creatorcontrib>Yang, Benjamin</creatorcontrib><creatorcontrib>Marconnet, Amy</creatorcontrib><creatorcontrib>Dias, Neville</creatorcontrib><creatorcontrib>Willis, Keely</creatorcontrib><creatorcontrib>Jiang, Hongrui</creatorcontrib><creatorcontrib>Knezevic, Irena</creatorcontrib><creatorcontrib>Booske, John</creatorcontrib><creatorcontrib>Hagness, Susan</creatorcontrib><creatorcontrib>van der Weide, Daniel</creatorcontrib><creatorcontrib>Ferrier, Nicola</creatorcontrib><creatorcontrib>Bettermann, Alan</creatorcontrib><creatorcontrib>Limbach, Steve</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sengele, Sean</au><au>Yang, Benjamin</au><au>Marconnet, Amy</au><au>Dias, Neville</au><au>Willis, Keely</au><au>Jiang, Hongrui</au><au>Knezevic, Irena</au><au>Booske, John</au><au>Hagness, Susan</au><au>van der Weide, Daniel</au><au>Ferrier, Nicola</au><au>Bettermann, Alan</au><au>Limbach, Steve</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Microfabricated THz-regime Waveguides</atitle><btitle>2007 IEEE 34th International Conference on Plasma Science (ICOPS)</btitle><stitle>PLASMA</stitle><date>2007-06</date><risdate>2007</risdate><spage>648</spage><epage>648</epage><pages>648-648</pages><issn>0730-9244</issn><eissn>2576-7208</eissn><isbn>9781424409150</isbn><isbn>1424409152</isbn><abstract>Summary form only given. Vacuum electronic sources of THz regime (0.1-10 THz) radiation will require advanced methods to precisely fabricate miniature waveguides. We are exploring the design and fabrication of THz-regime waveguides using bulk silicon-based microfabrication, specifically, deep reactive ion etching. Due to the waveguide's dimensions it is advantageous to fabricate it in halves on two separate silicon wafers. Final assembly consists of metallizing the halves and thermocompressively bonding them together. Finding an appropriate diffusion barrier and bonding technique is vital to the success of this design and has recently been our primary focus. Along with the development of THz-regime waveguides, we are exploring a novel coupling technique that consists of a tapered silicon tip, made by wet chemical etching. These silicon tips, fabricated from square silicon rods approximately the size of the waveguide, can be fabricated with a tolerance of less than one micron by monitoring the electrolytic current in the etchant bath and controlling the submersion depth of the silicon rod via robotic controls. In conjunction with the development of the waveguides and couplers, we are also investigating how THz regime radiation interacts with metallic thin films. We are developing computational models to predict effective RF conductivity of metallic thin films at THz frequencies, including the effects of surface roughness scattering at the interfaces. Experimentally, our micro fabricated THz-regime waveguides provide us with an excellent platform for validating the model. By measuring the throughput power for different lengths of waveguide, we can determine the ohmic loss per unit length. This presentation will discuss the latest developments in all of these research efforts namely the fabrication of THz regime waveguides, coupling techniques and our investigation into electron transport in metallic thin films at THz frequencies.</abstract><pub>IEEE</pub><doi>10.1109/PPPS.2007.4345954</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0730-9244
ispartof 2007 IEEE 34th International Conference on Plasma Science (ICOPS), 2007, p.648-648
issn 0730-9244
2576-7208
language eng
recordid cdi_ieee_primary_4345954
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Assembly
Diffusion bonding
Etching
Frequency
Metallization
Optical device fabrication
Silicon
Size control
Transistors
Wafer bonding
title Microfabricated THz-regime Waveguides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A46%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Microfabricated%20THz-regime%20Waveguides&rft.btitle=2007%20IEEE%2034th%20International%20Conference%20on%20Plasma%20Science%20(ICOPS)&rft.au=Sengele,%20Sean&rft.date=2007-06&rft.spage=648&rft.epage=648&rft.pages=648-648&rft.issn=0730-9244&rft.eissn=2576-7208&rft.isbn=9781424409150&rft.isbn_list=1424409152&rft_id=info:doi/10.1109/PPPS.2007.4345954&rft_dat=%3Cieee_6IE%3E4345954%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4345954&rfr_iscdi=true