Sequencing Mixed Model Assembly Lines Based on a Modified Particle Swarm Optimization Multi-objective Algorithm

Mixed model assembly lines are attractive means of mass and large-scale series production. Determination of the production sequence for different models is a key issue in the mixed model assembly line. Particle swarm optimization (PSO) is a novel metaheuristic inspired by the flocking behaviour of b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Qiaoying Dong, Shulin Kan, Ling Qin, Zhihui Huang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2823
container_issue
container_start_page 2818
container_title
container_volume
creator Qiaoying Dong
Shulin Kan
Ling Qin
Zhihui Huang
description Mixed model assembly lines are attractive means of mass and large-scale series production. Determination of the production sequence for different models is a key issue in the mixed model assembly line. Particle swarm optimization (PSO) is a novel metaheuristic inspired by the flocking behaviour of birds which has be used in consecutive problems successfully. However, it's applications in the mixed model assembly line sequencing are extremely few. This paper attempts to use a modified particle swarm optimization algorithm to solve the mixed model assembly line sequencing problem in discrete space with two objectives: the total setup cost and total idle-overload cost. Compared with the original PSO, we modified the particle position representation and adapted it to the discrete code, and introduced a self-adaptive escape scheme to enhance the diversity of particles. A comparison between the basic PSO and our modified PSO show that our modified PSO algorithm is an effective sequencing method for mixed model assembly lines which possesses rich diversity.
doi_str_mv 10.1109/ICAL.2007.4339061
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4339061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4339061</ieee_id><sourcerecordid>4339061</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-5bbbf15345de35b1baa47dfcf2a41e749370509f9d99165920749d23498fffe53</originalsourceid><addsrcrecordid>eNo9kN1OAjEQhRt_EhF5AONNX2Cxs2239BKJqAkEEzTxjrS7UxyyP7i7qPj0LpF4NZn5TibnHMauQQwBhL19moxnw1gIM1RSWpHACevFkEA0guTtlF2CipUCLUGd_QMNF2zQNBshBAhjrbE9Vi3xY4dlSuWaz-kbMz6vMsz5uGmw8Pmez6jEht-5pkNVyd2BU6Bue3Z1S2mOfPnl6oIvti0V9ONa6mTzXd5SVPkNpi19Ih_n66qm9r24YufB5Q0OjrPPXqf3L5PHaLZ4OGSKCIxuI-29D519pTOU2oN3TpkspCF2CtAoK43QwgabWQuJtrHoblkslR2FEFDLPrv5-0uIuNrWVLh6vzp2JX8BdOVcTA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Sequencing Mixed Model Assembly Lines Based on a Modified Particle Swarm Optimization Multi-objective Algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Qiaoying Dong ; Shulin Kan ; Ling Qin ; Zhihui Huang</creator><creatorcontrib>Qiaoying Dong ; Shulin Kan ; Ling Qin ; Zhihui Huang</creatorcontrib><description>Mixed model assembly lines are attractive means of mass and large-scale series production. Determination of the production sequence for different models is a key issue in the mixed model assembly line. Particle swarm optimization (PSO) is a novel metaheuristic inspired by the flocking behaviour of birds which has be used in consecutive problems successfully. However, it's applications in the mixed model assembly line sequencing are extremely few. This paper attempts to use a modified particle swarm optimization algorithm to solve the mixed model assembly line sequencing problem in discrete space with two objectives: the total setup cost and total idle-overload cost. Compared with the original PSO, we modified the particle position representation and adapted it to the discrete code, and introduced a self-adaptive escape scheme to enhance the diversity of particles. A comparison between the basic PSO and our modified PSO show that our modified PSO algorithm is an effective sequencing method for mixed model assembly lines which possesses rich diversity.</description><identifier>ISSN: 2161-8151</identifier><identifier>ISBN: 1424415314</identifier><identifier>ISBN: 9781424415311</identifier><identifier>ISBN: 1424415306</identifier><identifier>ISBN: 9781424415304</identifier><identifier>EISSN: 2161-816X</identifier><identifier>DOI: 10.1109/ICAL.2007.4339061</identifier><language>eng</language><publisher>IEEE</publisher><subject>Ant colony optimization ; Assembly ; Automation ; Belts ; Birds ; Cost function ; Educational institutions ; Flow production systems ; Mass production ; mixed model assembly line ; modified PSO ; muti-objective ; Particle swarm optimization ; sequencing</subject><ispartof>2007 IEEE International Conference on Automation and Logistics, 2007, p.2818-2823</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4339061$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4339061$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qiaoying Dong</creatorcontrib><creatorcontrib>Shulin Kan</creatorcontrib><creatorcontrib>Ling Qin</creatorcontrib><creatorcontrib>Zhihui Huang</creatorcontrib><title>Sequencing Mixed Model Assembly Lines Based on a Modified Particle Swarm Optimization Multi-objective Algorithm</title><title>2007 IEEE International Conference on Automation and Logistics</title><addtitle>ICAL</addtitle><description>Mixed model assembly lines are attractive means of mass and large-scale series production. Determination of the production sequence for different models is a key issue in the mixed model assembly line. Particle swarm optimization (PSO) is a novel metaheuristic inspired by the flocking behaviour of birds which has be used in consecutive problems successfully. However, it's applications in the mixed model assembly line sequencing are extremely few. This paper attempts to use a modified particle swarm optimization algorithm to solve the mixed model assembly line sequencing problem in discrete space with two objectives: the total setup cost and total idle-overload cost. Compared with the original PSO, we modified the particle position representation and adapted it to the discrete code, and introduced a self-adaptive escape scheme to enhance the diversity of particles. A comparison between the basic PSO and our modified PSO show that our modified PSO algorithm is an effective sequencing method for mixed model assembly lines which possesses rich diversity.</description><subject>Ant colony optimization</subject><subject>Assembly</subject><subject>Automation</subject><subject>Belts</subject><subject>Birds</subject><subject>Cost function</subject><subject>Educational institutions</subject><subject>Flow production systems</subject><subject>Mass production</subject><subject>mixed model assembly line</subject><subject>modified PSO</subject><subject>muti-objective</subject><subject>Particle swarm optimization</subject><subject>sequencing</subject><issn>2161-8151</issn><issn>2161-816X</issn><isbn>1424415314</isbn><isbn>9781424415311</isbn><isbn>1424415306</isbn><isbn>9781424415304</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kN1OAjEQhRt_EhF5AONNX2Cxs2239BKJqAkEEzTxjrS7UxyyP7i7qPj0LpF4NZn5TibnHMauQQwBhL19moxnw1gIM1RSWpHACevFkEA0guTtlF2CipUCLUGd_QMNF2zQNBshBAhjrbE9Vi3xY4dlSuWaz-kbMz6vMsz5uGmw8Pmez6jEht-5pkNVyd2BU6Bue3Z1S2mOfPnl6oIvti0V9ONa6mTzXd5SVPkNpi19Ih_n66qm9r24YufB5Q0OjrPPXqf3L5PHaLZ4OGSKCIxuI-29D519pTOU2oN3TpkspCF2CtAoK43QwgabWQuJtrHoblkslR2FEFDLPrv5-0uIuNrWVLh6vzp2JX8BdOVcTA</recordid><startdate>200708</startdate><enddate>200708</enddate><creator>Qiaoying Dong</creator><creator>Shulin Kan</creator><creator>Ling Qin</creator><creator>Zhihui Huang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200708</creationdate><title>Sequencing Mixed Model Assembly Lines Based on a Modified Particle Swarm Optimization Multi-objective Algorithm</title><author>Qiaoying Dong ; Shulin Kan ; Ling Qin ; Zhihui Huang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-5bbbf15345de35b1baa47dfcf2a41e749370509f9d99165920749d23498fffe53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Ant colony optimization</topic><topic>Assembly</topic><topic>Automation</topic><topic>Belts</topic><topic>Birds</topic><topic>Cost function</topic><topic>Educational institutions</topic><topic>Flow production systems</topic><topic>Mass production</topic><topic>mixed model assembly line</topic><topic>modified PSO</topic><topic>muti-objective</topic><topic>Particle swarm optimization</topic><topic>sequencing</topic><toplevel>online_resources</toplevel><creatorcontrib>Qiaoying Dong</creatorcontrib><creatorcontrib>Shulin Kan</creatorcontrib><creatorcontrib>Ling Qin</creatorcontrib><creatorcontrib>Zhihui Huang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qiaoying Dong</au><au>Shulin Kan</au><au>Ling Qin</au><au>Zhihui Huang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Sequencing Mixed Model Assembly Lines Based on a Modified Particle Swarm Optimization Multi-objective Algorithm</atitle><btitle>2007 IEEE International Conference on Automation and Logistics</btitle><stitle>ICAL</stitle><date>2007-08</date><risdate>2007</risdate><spage>2818</spage><epage>2823</epage><pages>2818-2823</pages><issn>2161-8151</issn><eissn>2161-816X</eissn><isbn>1424415314</isbn><isbn>9781424415311</isbn><isbn>1424415306</isbn><isbn>9781424415304</isbn><abstract>Mixed model assembly lines are attractive means of mass and large-scale series production. Determination of the production sequence for different models is a key issue in the mixed model assembly line. Particle swarm optimization (PSO) is a novel metaheuristic inspired by the flocking behaviour of birds which has be used in consecutive problems successfully. However, it's applications in the mixed model assembly line sequencing are extremely few. This paper attempts to use a modified particle swarm optimization algorithm to solve the mixed model assembly line sequencing problem in discrete space with two objectives: the total setup cost and total idle-overload cost. Compared with the original PSO, we modified the particle position representation and adapted it to the discrete code, and introduced a self-adaptive escape scheme to enhance the diversity of particles. A comparison between the basic PSO and our modified PSO show that our modified PSO algorithm is an effective sequencing method for mixed model assembly lines which possesses rich diversity.</abstract><pub>IEEE</pub><doi>10.1109/ICAL.2007.4339061</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2161-8151
ispartof 2007 IEEE International Conference on Automation and Logistics, 2007, p.2818-2823
issn 2161-8151
2161-816X
language eng
recordid cdi_ieee_primary_4339061
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Ant colony optimization
Assembly
Automation
Belts
Birds
Cost function
Educational institutions
Flow production systems
Mass production
mixed model assembly line
modified PSO
muti-objective
Particle swarm optimization
sequencing
title Sequencing Mixed Model Assembly Lines Based on a Modified Particle Swarm Optimization Multi-objective Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T19%3A26%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Sequencing%20Mixed%20Model%20Assembly%20Lines%20Based%20on%20a%20Modified%20Particle%20Swarm%20Optimization%20Multi-objective%20Algorithm&rft.btitle=2007%20IEEE%20International%20Conference%20on%20Automation%20and%20Logistics&rft.au=Qiaoying%20Dong&rft.date=2007-08&rft.spage=2818&rft.epage=2823&rft.pages=2818-2823&rft.issn=2161-8151&rft.eissn=2161-816X&rft.isbn=1424415314&rft.isbn_list=9781424415311&rft.isbn_list=1424415306&rft.isbn_list=9781424415304&rft_id=info:doi/10.1109/ICAL.2007.4339061&rft_dat=%3Cieee_6IE%3E4339061%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4339061&rfr_iscdi=true