A New Near-Lossless Image Compression Algorithm

This paper proposes a new near-lossless image compression algorithm, namely empirical data decomposition (EDD), which can carry on adaptive analysis to the observation data. The algorithm suits to analyze non-stationary data and can effectively remove the relevance between of observation data. In ED...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wu Xiaoqin, Kang Yaohong, Zhang Hongke, Deng Jiaxian
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2815
container_issue
container_start_page 2813
container_title
container_volume
creator Wu Xiaoqin
Kang Yaohong
Zhang Hongke
Deng Jiaxian
description This paper proposes a new near-lossless image compression algorithm, namely empirical data decomposition (EDD), which can carry on adaptive analysis to the observation data. The algorithm suits to analyze non-stationary data and can effectively remove the relevance between of observation data. In EDD, analysis filter is automatically determined by observation data, and is able to realize the multi-resolution analysis. Performing compression on continuous tone image and hyper-spectrum images with the improved EBCOT based on EDD and JPEG2000, respectively, the simulation results indicate that, in the case of high or higher code rate, EDD can obtain higher image compression efficiency.
doi_str_mv 10.1109/ICIEA.2007.4318924
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4318924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4318924</ieee_id><sourcerecordid>4318924</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-da055bf8752e4beecd2ea8c1f64851a66e2c4a5074810cdaf7024f28427693233</originalsourceid><addsrcrecordid>eNpVj81Kw1AUhK9_YKl5Ad3kBW56zrm_WYZQayDoRtflNjmpkcSU3IL49hbtxsUwDB8zMELcI2SIkK-qsloXGQG4TCv0OekLkeTOoyatwSnnL8WC0HhJlLurf8zi9S-zkk7VW5HE-AEACp3zChdiVaTP_HVSmGU9xThwjGk1hj2n5TQe5lPsp8-0GPbT3B_fxztx04UhcnL2pXh7XL-WT7J-2VRlUcsenTnKNoAxu847Q6x3zE1LHHyDndXeYLCWqdHBgNMeoWlD54B0R16Ts7kipZbi4W-3Z-btYe7HMH9vz_fVD6q7R8I</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A New Near-Lossless Image Compression Algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wu Xiaoqin ; Kang Yaohong ; Zhang Hongke ; Deng Jiaxian</creator><creatorcontrib>Wu Xiaoqin ; Kang Yaohong ; Zhang Hongke ; Deng Jiaxian</creatorcontrib><description>This paper proposes a new near-lossless image compression algorithm, namely empirical data decomposition (EDD), which can carry on adaptive analysis to the observation data. The algorithm suits to analyze non-stationary data and can effectively remove the relevance between of observation data. In EDD, analysis filter is automatically determined by observation data, and is able to realize the multi-resolution analysis. Performing compression on continuous tone image and hyper-spectrum images with the improved EBCOT based on EDD and JPEG2000, respectively, the simulation results indicate that, in the case of high or higher code rate, EDD can obtain higher image compression efficiency.</description><identifier>ISSN: 2156-2318</identifier><identifier>ISBN: 9781424407361</identifier><identifier>ISBN: 1424407362</identifier><identifier>EISSN: 2158-2297</identifier><identifier>EISBN: 9781424407378</identifier><identifier>EISBN: 1424407370</identifier><identifier>DOI: 10.1109/ICIEA.2007.4318924</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Data analysis ; Educational institutions ; Fourier transforms ; Image analysis ; Image coding ; Information science ; Paper technology ; Poles and zeros ; Polynomials</subject><ispartof>2007 2nd IEEE Conference on Industrial Electronics and Applications, 2007, p.2813-2815</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4318924$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4318924$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu Xiaoqin</creatorcontrib><creatorcontrib>Kang Yaohong</creatorcontrib><creatorcontrib>Zhang Hongke</creatorcontrib><creatorcontrib>Deng Jiaxian</creatorcontrib><title>A New Near-Lossless Image Compression Algorithm</title><title>2007 2nd IEEE Conference on Industrial Electronics and Applications</title><addtitle>ICIEA</addtitle><description>This paper proposes a new near-lossless image compression algorithm, namely empirical data decomposition (EDD), which can carry on adaptive analysis to the observation data. The algorithm suits to analyze non-stationary data and can effectively remove the relevance between of observation data. In EDD, analysis filter is automatically determined by observation data, and is able to realize the multi-resolution analysis. Performing compression on continuous tone image and hyper-spectrum images with the improved EBCOT based on EDD and JPEG2000, respectively, the simulation results indicate that, in the case of high or higher code rate, EDD can obtain higher image compression efficiency.</description><subject>Algorithm design and analysis</subject><subject>Data analysis</subject><subject>Educational institutions</subject><subject>Fourier transforms</subject><subject>Image analysis</subject><subject>Image coding</subject><subject>Information science</subject><subject>Paper technology</subject><subject>Poles and zeros</subject><subject>Polynomials</subject><issn>2156-2318</issn><issn>2158-2297</issn><isbn>9781424407361</isbn><isbn>1424407362</isbn><isbn>9781424407378</isbn><isbn>1424407370</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVj81Kw1AUhK9_YKl5Ad3kBW56zrm_WYZQayDoRtflNjmpkcSU3IL49hbtxsUwDB8zMELcI2SIkK-qsloXGQG4TCv0OekLkeTOoyatwSnnL8WC0HhJlLurf8zi9S-zkk7VW5HE-AEACp3zChdiVaTP_HVSmGU9xThwjGk1hj2n5TQe5lPsp8-0GPbT3B_fxztx04UhcnL2pXh7XL-WT7J-2VRlUcsenTnKNoAxu847Q6x3zE1LHHyDndXeYLCWqdHBgNMeoWlD54B0R16Ts7kipZbi4W-3Z-btYe7HMH9vz_fVD6q7R8I</recordid><startdate>200705</startdate><enddate>200705</enddate><creator>Wu Xiaoqin</creator><creator>Kang Yaohong</creator><creator>Zhang Hongke</creator><creator>Deng Jiaxian</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200705</creationdate><title>A New Near-Lossless Image Compression Algorithm</title><author>Wu Xiaoqin ; Kang Yaohong ; Zhang Hongke ; Deng Jiaxian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-da055bf8752e4beecd2ea8c1f64851a66e2c4a5074810cdaf7024f28427693233</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithm design and analysis</topic><topic>Data analysis</topic><topic>Educational institutions</topic><topic>Fourier transforms</topic><topic>Image analysis</topic><topic>Image coding</topic><topic>Information science</topic><topic>Paper technology</topic><topic>Poles and zeros</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Wu Xiaoqin</creatorcontrib><creatorcontrib>Kang Yaohong</creatorcontrib><creatorcontrib>Zhang Hongke</creatorcontrib><creatorcontrib>Deng Jiaxian</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu Xiaoqin</au><au>Kang Yaohong</au><au>Zhang Hongke</au><au>Deng Jiaxian</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A New Near-Lossless Image Compression Algorithm</atitle><btitle>2007 2nd IEEE Conference on Industrial Electronics and Applications</btitle><stitle>ICIEA</stitle><date>2007-05</date><risdate>2007</risdate><spage>2813</spage><epage>2815</epage><pages>2813-2815</pages><issn>2156-2318</issn><eissn>2158-2297</eissn><isbn>9781424407361</isbn><isbn>1424407362</isbn><eisbn>9781424407378</eisbn><eisbn>1424407370</eisbn><abstract>This paper proposes a new near-lossless image compression algorithm, namely empirical data decomposition (EDD), which can carry on adaptive analysis to the observation data. The algorithm suits to analyze non-stationary data and can effectively remove the relevance between of observation data. In EDD, analysis filter is automatically determined by observation data, and is able to realize the multi-resolution analysis. Performing compression on continuous tone image and hyper-spectrum images with the improved EBCOT based on EDD and JPEG2000, respectively, the simulation results indicate that, in the case of high or higher code rate, EDD can obtain higher image compression efficiency.</abstract><pub>IEEE</pub><doi>10.1109/ICIEA.2007.4318924</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2156-2318
ispartof 2007 2nd IEEE Conference on Industrial Electronics and Applications, 2007, p.2813-2815
issn 2156-2318
2158-2297
language eng
recordid cdi_ieee_primary_4318924
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Data analysis
Educational institutions
Fourier transforms
Image analysis
Image coding
Information science
Paper technology
Poles and zeros
Polynomials
title A New Near-Lossless Image Compression Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A06%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20New%20Near-Lossless%20Image%20Compression%20Algorithm&rft.btitle=2007%202nd%20IEEE%20Conference%20on%20Industrial%20Electronics%20and%20Applications&rft.au=Wu%20Xiaoqin&rft.date=2007-05&rft.spage=2813&rft.epage=2815&rft.pages=2813-2815&rft.issn=2156-2318&rft.eissn=2158-2297&rft.isbn=9781424407361&rft.isbn_list=1424407362&rft_id=info:doi/10.1109/ICIEA.2007.4318924&rft_dat=%3Cieee_6IE%3E4318924%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424407378&rft.eisbn_list=1424407370&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4318924&rfr_iscdi=true