A New Near-Lossless Image Compression Algorithm
This paper proposes a new near-lossless image compression algorithm, namely empirical data decomposition (EDD), which can carry on adaptive analysis to the observation data. The algorithm suits to analyze non-stationary data and can effectively remove the relevance between of observation data. In ED...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2815 |
---|---|
container_issue | |
container_start_page | 2813 |
container_title | |
container_volume | |
creator | Wu Xiaoqin Kang Yaohong Zhang Hongke Deng Jiaxian |
description | This paper proposes a new near-lossless image compression algorithm, namely empirical data decomposition (EDD), which can carry on adaptive analysis to the observation data. The algorithm suits to analyze non-stationary data and can effectively remove the relevance between of observation data. In EDD, analysis filter is automatically determined by observation data, and is able to realize the multi-resolution analysis. Performing compression on continuous tone image and hyper-spectrum images with the improved EBCOT based on EDD and JPEG2000, respectively, the simulation results indicate that, in the case of high or higher code rate, EDD can obtain higher image compression efficiency. |
doi_str_mv | 10.1109/ICIEA.2007.4318924 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4318924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4318924</ieee_id><sourcerecordid>4318924</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-da055bf8752e4beecd2ea8c1f64851a66e2c4a5074810cdaf7024f28427693233</originalsourceid><addsrcrecordid>eNpVj81Kw1AUhK9_YKl5Ad3kBW56zrm_WYZQayDoRtflNjmpkcSU3IL49hbtxsUwDB8zMELcI2SIkK-qsloXGQG4TCv0OekLkeTOoyatwSnnL8WC0HhJlLurf8zi9S-zkk7VW5HE-AEACp3zChdiVaTP_HVSmGU9xThwjGk1hj2n5TQe5lPsp8-0GPbT3B_fxztx04UhcnL2pXh7XL-WT7J-2VRlUcsenTnKNoAxu847Q6x3zE1LHHyDndXeYLCWqdHBgNMeoWlD54B0R16Ts7kipZbi4W-3Z-btYe7HMH9vz_fVD6q7R8I</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A New Near-Lossless Image Compression Algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wu Xiaoqin ; Kang Yaohong ; Zhang Hongke ; Deng Jiaxian</creator><creatorcontrib>Wu Xiaoqin ; Kang Yaohong ; Zhang Hongke ; Deng Jiaxian</creatorcontrib><description>This paper proposes a new near-lossless image compression algorithm, namely empirical data decomposition (EDD), which can carry on adaptive analysis to the observation data. The algorithm suits to analyze non-stationary data and can effectively remove the relevance between of observation data. In EDD, analysis filter is automatically determined by observation data, and is able to realize the multi-resolution analysis. Performing compression on continuous tone image and hyper-spectrum images with the improved EBCOT based on EDD and JPEG2000, respectively, the simulation results indicate that, in the case of high or higher code rate, EDD can obtain higher image compression efficiency.</description><identifier>ISSN: 2156-2318</identifier><identifier>ISBN: 9781424407361</identifier><identifier>ISBN: 1424407362</identifier><identifier>EISSN: 2158-2297</identifier><identifier>EISBN: 9781424407378</identifier><identifier>EISBN: 1424407370</identifier><identifier>DOI: 10.1109/ICIEA.2007.4318924</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Data analysis ; Educational institutions ; Fourier transforms ; Image analysis ; Image coding ; Information science ; Paper technology ; Poles and zeros ; Polynomials</subject><ispartof>2007 2nd IEEE Conference on Industrial Electronics and Applications, 2007, p.2813-2815</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4318924$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4318924$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu Xiaoqin</creatorcontrib><creatorcontrib>Kang Yaohong</creatorcontrib><creatorcontrib>Zhang Hongke</creatorcontrib><creatorcontrib>Deng Jiaxian</creatorcontrib><title>A New Near-Lossless Image Compression Algorithm</title><title>2007 2nd IEEE Conference on Industrial Electronics and Applications</title><addtitle>ICIEA</addtitle><description>This paper proposes a new near-lossless image compression algorithm, namely empirical data decomposition (EDD), which can carry on adaptive analysis to the observation data. The algorithm suits to analyze non-stationary data and can effectively remove the relevance between of observation data. In EDD, analysis filter is automatically determined by observation data, and is able to realize the multi-resolution analysis. Performing compression on continuous tone image and hyper-spectrum images with the improved EBCOT based on EDD and JPEG2000, respectively, the simulation results indicate that, in the case of high or higher code rate, EDD can obtain higher image compression efficiency.</description><subject>Algorithm design and analysis</subject><subject>Data analysis</subject><subject>Educational institutions</subject><subject>Fourier transforms</subject><subject>Image analysis</subject><subject>Image coding</subject><subject>Information science</subject><subject>Paper technology</subject><subject>Poles and zeros</subject><subject>Polynomials</subject><issn>2156-2318</issn><issn>2158-2297</issn><isbn>9781424407361</isbn><isbn>1424407362</isbn><isbn>9781424407378</isbn><isbn>1424407370</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVj81Kw1AUhK9_YKl5Ad3kBW56zrm_WYZQayDoRtflNjmpkcSU3IL49hbtxsUwDB8zMELcI2SIkK-qsloXGQG4TCv0OekLkeTOoyatwSnnL8WC0HhJlLurf8zi9S-zkk7VW5HE-AEACp3zChdiVaTP_HVSmGU9xThwjGk1hj2n5TQe5lPsp8-0GPbT3B_fxztx04UhcnL2pXh7XL-WT7J-2VRlUcsenTnKNoAxu847Q6x3zE1LHHyDndXeYLCWqdHBgNMeoWlD54B0R16Ts7kipZbi4W-3Z-btYe7HMH9vz_fVD6q7R8I</recordid><startdate>200705</startdate><enddate>200705</enddate><creator>Wu Xiaoqin</creator><creator>Kang Yaohong</creator><creator>Zhang Hongke</creator><creator>Deng Jiaxian</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200705</creationdate><title>A New Near-Lossless Image Compression Algorithm</title><author>Wu Xiaoqin ; Kang Yaohong ; Zhang Hongke ; Deng Jiaxian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-da055bf8752e4beecd2ea8c1f64851a66e2c4a5074810cdaf7024f28427693233</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithm design and analysis</topic><topic>Data analysis</topic><topic>Educational institutions</topic><topic>Fourier transforms</topic><topic>Image analysis</topic><topic>Image coding</topic><topic>Information science</topic><topic>Paper technology</topic><topic>Poles and zeros</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Wu Xiaoqin</creatorcontrib><creatorcontrib>Kang Yaohong</creatorcontrib><creatorcontrib>Zhang Hongke</creatorcontrib><creatorcontrib>Deng Jiaxian</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu Xiaoqin</au><au>Kang Yaohong</au><au>Zhang Hongke</au><au>Deng Jiaxian</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A New Near-Lossless Image Compression Algorithm</atitle><btitle>2007 2nd IEEE Conference on Industrial Electronics and Applications</btitle><stitle>ICIEA</stitle><date>2007-05</date><risdate>2007</risdate><spage>2813</spage><epage>2815</epage><pages>2813-2815</pages><issn>2156-2318</issn><eissn>2158-2297</eissn><isbn>9781424407361</isbn><isbn>1424407362</isbn><eisbn>9781424407378</eisbn><eisbn>1424407370</eisbn><abstract>This paper proposes a new near-lossless image compression algorithm, namely empirical data decomposition (EDD), which can carry on adaptive analysis to the observation data. The algorithm suits to analyze non-stationary data and can effectively remove the relevance between of observation data. In EDD, analysis filter is automatically determined by observation data, and is able to realize the multi-resolution analysis. Performing compression on continuous tone image and hyper-spectrum images with the improved EBCOT based on EDD and JPEG2000, respectively, the simulation results indicate that, in the case of high or higher code rate, EDD can obtain higher image compression efficiency.</abstract><pub>IEEE</pub><doi>10.1109/ICIEA.2007.4318924</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2156-2318 |
ispartof | 2007 2nd IEEE Conference on Industrial Electronics and Applications, 2007, p.2813-2815 |
issn | 2156-2318 2158-2297 |
language | eng |
recordid | cdi_ieee_primary_4318924 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Data analysis Educational institutions Fourier transforms Image analysis Image coding Information science Paper technology Poles and zeros Polynomials |
title | A New Near-Lossless Image Compression Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A06%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20New%20Near-Lossless%20Image%20Compression%20Algorithm&rft.btitle=2007%202nd%20IEEE%20Conference%20on%20Industrial%20Electronics%20and%20Applications&rft.au=Wu%20Xiaoqin&rft.date=2007-05&rft.spage=2813&rft.epage=2815&rft.pages=2813-2815&rft.issn=2156-2318&rft.eissn=2158-2297&rft.isbn=9781424407361&rft.isbn_list=1424407362&rft_id=info:doi/10.1109/ICIEA.2007.4318924&rft_dat=%3Cieee_6IE%3E4318924%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424407378&rft.eisbn_list=1424407370&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4318924&rfr_iscdi=true |