Video Semantic Content Analysis based on Ontology

The rapid increase in the available amount of video data is creating a growing demand for efficient methods for understanding and managing it at the semantic level. New multimedia standards, such as MPEG-4 and MPEG-7, provide the basic functionalities in order to manipulate and transmit objects and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Liang Bai, Songyang Lao, Jones, G.J.F., Smeaton, A.F.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 124
container_issue
container_start_page 117
container_title
container_volume
creator Liang Bai
Songyang Lao
Jones, G.J.F.
Smeaton, A.F.
description The rapid increase in the available amount of video data is creating a growing demand for efficient methods for understanding and managing it at the semantic level. New multimedia standards, such as MPEG-4 and MPEG-7, provide the basic functionalities in order to manipulate and transmit objects and metadata. But importantly, most of the content of video data at a semantic level is out of the scope of the standards. In this paper, a video semantic content analysis framework based on ontology is presented. Domain ontology is used to define high level semantic concepts and their relations in the context of the examined domain. And low-level features (e.g. visual and aural) and video content analysis algorithms are integrated into the ontology to enrich video semantic analysis. OWL is used for the ontology description. Rules in Description Logic are defined to describe how features and algorithms for video analysis should be applied according to different perception content and low-level features. Temporal Description Logic is used to describe the semantic events, and a reasoning algorithm is proposed for events detection. The proposed framework is demonstrated in a soccer video domain and shows promising results.
doi_str_mv 10.1109/IMVIP.2007.13
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4318145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4318145</ieee_id><sourcerecordid>4318145</sourcerecordid><originalsourceid>FETCH-LOGICAL-i144t-1551d855c50bd87aae88829bfebcd48a5901f6e8ebbe547cae866654a3d007603</originalsourceid><addsrcrecordid>eNotjr1qwzAURgWl0DbN2KmLXsCurqUry2Mw_TGkpNAka5Cs66LiSCXy4revof2WMxw4fIw9gCgBRPPUvR-7j7ISoi5BXrE7UesGK2Pq6oatc_4Wy2SDWqpbBsfgKfFPOts4hZ63KU4UJ76JdpxzyNzZTJ6nyHdxSmP6mu_Z9WDHTOt_rtjh5XnfvhXb3WvXbrZFAKWmAhDBG8QehfOmtpaMMVXjBnK9V8ZiI2DQZMg5QlX3i9dao7LSL8e1kCv2-NcNRHT6uYSzvcwnJcGAQvkLVP5BUw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Video Semantic Content Analysis based on Ontology</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Liang Bai ; Songyang Lao ; Jones, G.J.F. ; Smeaton, A.F.</creator><creatorcontrib>Liang Bai ; Songyang Lao ; Jones, G.J.F. ; Smeaton, A.F.</creatorcontrib><description>The rapid increase in the available amount of video data is creating a growing demand for efficient methods for understanding and managing it at the semantic level. New multimedia standards, such as MPEG-4 and MPEG-7, provide the basic functionalities in order to manipulate and transmit objects and metadata. But importantly, most of the content of video data at a semantic level is out of the scope of the standards. In this paper, a video semantic content analysis framework based on ontology is presented. Domain ontology is used to define high level semantic concepts and their relations in the context of the examined domain. And low-level features (e.g. visual and aural) and video content analysis algorithms are integrated into the ontology to enrich video semantic analysis. OWL is used for the ontology description. Rules in Description Logic are defined to describe how features and algorithms for video analysis should be applied according to different perception content and low-level features. Temporal Description Logic is used to describe the semantic events, and a reasoning algorithm is proposed for events detection. The proposed framework is demonstrated in a soccer video domain and shows promising results.</description><identifier>ISBN: 0769528872</identifier><identifier>ISBN: 9780769528878</identifier><identifier>DOI: 10.1109/IMVIP.2007.13</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Conference management ; Content management ; Logic ; MPEG 7 Standard ; Ontologies ; Resource description framework ; Video on demand ; Video sharing ; Videoconference</subject><ispartof>International Machine Vision and Image Processing Conference (IMVIP 2007), 2007, p.117-124</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4318145$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4318145$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liang Bai</creatorcontrib><creatorcontrib>Songyang Lao</creatorcontrib><creatorcontrib>Jones, G.J.F.</creatorcontrib><creatorcontrib>Smeaton, A.F.</creatorcontrib><title>Video Semantic Content Analysis based on Ontology</title><title>International Machine Vision and Image Processing Conference (IMVIP 2007)</title><addtitle>IMVIP</addtitle><description>The rapid increase in the available amount of video data is creating a growing demand for efficient methods for understanding and managing it at the semantic level. New multimedia standards, such as MPEG-4 and MPEG-7, provide the basic functionalities in order to manipulate and transmit objects and metadata. But importantly, most of the content of video data at a semantic level is out of the scope of the standards. In this paper, a video semantic content analysis framework based on ontology is presented. Domain ontology is used to define high level semantic concepts and their relations in the context of the examined domain. And low-level features (e.g. visual and aural) and video content analysis algorithms are integrated into the ontology to enrich video semantic analysis. OWL is used for the ontology description. Rules in Description Logic are defined to describe how features and algorithms for video analysis should be applied according to different perception content and low-level features. Temporal Description Logic is used to describe the semantic events, and a reasoning algorithm is proposed for events detection. The proposed framework is demonstrated in a soccer video domain and shows promising results.</description><subject>Algorithm design and analysis</subject><subject>Conference management</subject><subject>Content management</subject><subject>Logic</subject><subject>MPEG 7 Standard</subject><subject>Ontologies</subject><subject>Resource description framework</subject><subject>Video on demand</subject><subject>Video sharing</subject><subject>Videoconference</subject><isbn>0769528872</isbn><isbn>9780769528878</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjr1qwzAURgWl0DbN2KmLXsCurqUry2Mw_TGkpNAka5Cs66LiSCXy4revof2WMxw4fIw9gCgBRPPUvR-7j7ISoi5BXrE7UesGK2Pq6oatc_4Wy2SDWqpbBsfgKfFPOts4hZ63KU4UJ76JdpxzyNzZTJ6nyHdxSmP6mu_Z9WDHTOt_rtjh5XnfvhXb3WvXbrZFAKWmAhDBG8QehfOmtpaMMVXjBnK9V8ZiI2DQZMg5QlX3i9dao7LSL8e1kCv2-NcNRHT6uYSzvcwnJcGAQvkLVP5BUw</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>Liang Bai</creator><creator>Songyang Lao</creator><creator>Jones, G.J.F.</creator><creator>Smeaton, A.F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200709</creationdate><title>Video Semantic Content Analysis based on Ontology</title><author>Liang Bai ; Songyang Lao ; Jones, G.J.F. ; Smeaton, A.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i144t-1551d855c50bd87aae88829bfebcd48a5901f6e8ebbe547cae866654a3d007603</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithm design and analysis</topic><topic>Conference management</topic><topic>Content management</topic><topic>Logic</topic><topic>MPEG 7 Standard</topic><topic>Ontologies</topic><topic>Resource description framework</topic><topic>Video on demand</topic><topic>Video sharing</topic><topic>Videoconference</topic><toplevel>online_resources</toplevel><creatorcontrib>Liang Bai</creatorcontrib><creatorcontrib>Songyang Lao</creatorcontrib><creatorcontrib>Jones, G.J.F.</creatorcontrib><creatorcontrib>Smeaton, A.F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liang Bai</au><au>Songyang Lao</au><au>Jones, G.J.F.</au><au>Smeaton, A.F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Video Semantic Content Analysis based on Ontology</atitle><btitle>International Machine Vision and Image Processing Conference (IMVIP 2007)</btitle><stitle>IMVIP</stitle><date>2007-09</date><risdate>2007</risdate><spage>117</spage><epage>124</epage><pages>117-124</pages><isbn>0769528872</isbn><isbn>9780769528878</isbn><abstract>The rapid increase in the available amount of video data is creating a growing demand for efficient methods for understanding and managing it at the semantic level. New multimedia standards, such as MPEG-4 and MPEG-7, provide the basic functionalities in order to manipulate and transmit objects and metadata. But importantly, most of the content of video data at a semantic level is out of the scope of the standards. In this paper, a video semantic content analysis framework based on ontology is presented. Domain ontology is used to define high level semantic concepts and their relations in the context of the examined domain. And low-level features (e.g. visual and aural) and video content analysis algorithms are integrated into the ontology to enrich video semantic analysis. OWL is used for the ontology description. Rules in Description Logic are defined to describe how features and algorithms for video analysis should be applied according to different perception content and low-level features. Temporal Description Logic is used to describe the semantic events, and a reasoning algorithm is proposed for events detection. The proposed framework is demonstrated in a soccer video domain and shows promising results.</abstract><pub>IEEE</pub><doi>10.1109/IMVIP.2007.13</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0769528872
ispartof International Machine Vision and Image Processing Conference (IMVIP 2007), 2007, p.117-124
issn
language eng
recordid cdi_ieee_primary_4318145
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Conference management
Content management
Logic
MPEG 7 Standard
Ontologies
Resource description framework
Video on demand
Video sharing
Videoconference
title Video Semantic Content Analysis based on Ontology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T00%3A17%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Video%20Semantic%20Content%20Analysis%20based%20on%20Ontology&rft.btitle=International%20Machine%20Vision%20and%20Image%20Processing%20Conference%20(IMVIP%202007)&rft.au=Liang%20Bai&rft.date=2007-09&rft.spage=117&rft.epage=124&rft.pages=117-124&rft.isbn=0769528872&rft.isbn_list=9780769528878&rft_id=info:doi/10.1109/IMVIP.2007.13&rft_dat=%3Cieee_6IE%3E4318145%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4318145&rfr_iscdi=true