Video Semantic Content Analysis based on Ontology
The rapid increase in the available amount of video data is creating a growing demand for efficient methods for understanding and managing it at the semantic level. New multimedia standards, such as MPEG-4 and MPEG-7, provide the basic functionalities in order to manipulate and transmit objects and...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 124 |
---|---|
container_issue | |
container_start_page | 117 |
container_title | |
container_volume | |
creator | Liang Bai Songyang Lao Jones, G.J.F. Smeaton, A.F. |
description | The rapid increase in the available amount of video data is creating a growing demand for efficient methods for understanding and managing it at the semantic level. New multimedia standards, such as MPEG-4 and MPEG-7, provide the basic functionalities in order to manipulate and transmit objects and metadata. But importantly, most of the content of video data at a semantic level is out of the scope of the standards. In this paper, a video semantic content analysis framework based on ontology is presented. Domain ontology is used to define high level semantic concepts and their relations in the context of the examined domain. And low-level features (e.g. visual and aural) and video content analysis algorithms are integrated into the ontology to enrich video semantic analysis. OWL is used for the ontology description. Rules in Description Logic are defined to describe how features and algorithms for video analysis should be applied according to different perception content and low-level features. Temporal Description Logic is used to describe the semantic events, and a reasoning algorithm is proposed for events detection. The proposed framework is demonstrated in a soccer video domain and shows promising results. |
doi_str_mv | 10.1109/IMVIP.2007.13 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4318145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4318145</ieee_id><sourcerecordid>4318145</sourcerecordid><originalsourceid>FETCH-LOGICAL-i144t-1551d855c50bd87aae88829bfebcd48a5901f6e8ebbe547cae866654a3d007603</originalsourceid><addsrcrecordid>eNotjr1qwzAURgWl0DbN2KmLXsCurqUry2Mw_TGkpNAka5Cs66LiSCXy4revof2WMxw4fIw9gCgBRPPUvR-7j7ISoi5BXrE7UesGK2Pq6oatc_4Wy2SDWqpbBsfgKfFPOts4hZ63KU4UJ76JdpxzyNzZTJ6nyHdxSmP6mu_Z9WDHTOt_rtjh5XnfvhXb3WvXbrZFAKWmAhDBG8QehfOmtpaMMVXjBnK9V8ZiI2DQZMg5QlX3i9dao7LSL8e1kCv2-NcNRHT6uYSzvcwnJcGAQvkLVP5BUw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Video Semantic Content Analysis based on Ontology</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Liang Bai ; Songyang Lao ; Jones, G.J.F. ; Smeaton, A.F.</creator><creatorcontrib>Liang Bai ; Songyang Lao ; Jones, G.J.F. ; Smeaton, A.F.</creatorcontrib><description>The rapid increase in the available amount of video data is creating a growing demand for efficient methods for understanding and managing it at the semantic level. New multimedia standards, such as MPEG-4 and MPEG-7, provide the basic functionalities in order to manipulate and transmit objects and metadata. But importantly, most of the content of video data at a semantic level is out of the scope of the standards. In this paper, a video semantic content analysis framework based on ontology is presented. Domain ontology is used to define high level semantic concepts and their relations in the context of the examined domain. And low-level features (e.g. visual and aural) and video content analysis algorithms are integrated into the ontology to enrich video semantic analysis. OWL is used for the ontology description. Rules in Description Logic are defined to describe how features and algorithms for video analysis should be applied according to different perception content and low-level features. Temporal Description Logic is used to describe the semantic events, and a reasoning algorithm is proposed for events detection. The proposed framework is demonstrated in a soccer video domain and shows promising results.</description><identifier>ISBN: 0769528872</identifier><identifier>ISBN: 9780769528878</identifier><identifier>DOI: 10.1109/IMVIP.2007.13</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Conference management ; Content management ; Logic ; MPEG 7 Standard ; Ontologies ; Resource description framework ; Video on demand ; Video sharing ; Videoconference</subject><ispartof>International Machine Vision and Image Processing Conference (IMVIP 2007), 2007, p.117-124</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4318145$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4318145$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liang Bai</creatorcontrib><creatorcontrib>Songyang Lao</creatorcontrib><creatorcontrib>Jones, G.J.F.</creatorcontrib><creatorcontrib>Smeaton, A.F.</creatorcontrib><title>Video Semantic Content Analysis based on Ontology</title><title>International Machine Vision and Image Processing Conference (IMVIP 2007)</title><addtitle>IMVIP</addtitle><description>The rapid increase in the available amount of video data is creating a growing demand for efficient methods for understanding and managing it at the semantic level. New multimedia standards, such as MPEG-4 and MPEG-7, provide the basic functionalities in order to manipulate and transmit objects and metadata. But importantly, most of the content of video data at a semantic level is out of the scope of the standards. In this paper, a video semantic content analysis framework based on ontology is presented. Domain ontology is used to define high level semantic concepts and their relations in the context of the examined domain. And low-level features (e.g. visual and aural) and video content analysis algorithms are integrated into the ontology to enrich video semantic analysis. OWL is used for the ontology description. Rules in Description Logic are defined to describe how features and algorithms for video analysis should be applied according to different perception content and low-level features. Temporal Description Logic is used to describe the semantic events, and a reasoning algorithm is proposed for events detection. The proposed framework is demonstrated in a soccer video domain and shows promising results.</description><subject>Algorithm design and analysis</subject><subject>Conference management</subject><subject>Content management</subject><subject>Logic</subject><subject>MPEG 7 Standard</subject><subject>Ontologies</subject><subject>Resource description framework</subject><subject>Video on demand</subject><subject>Video sharing</subject><subject>Videoconference</subject><isbn>0769528872</isbn><isbn>9780769528878</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjr1qwzAURgWl0DbN2KmLXsCurqUry2Mw_TGkpNAka5Cs66LiSCXy4revof2WMxw4fIw9gCgBRPPUvR-7j7ISoi5BXrE7UesGK2Pq6oatc_4Wy2SDWqpbBsfgKfFPOts4hZ63KU4UJ76JdpxzyNzZTJ6nyHdxSmP6mu_Z9WDHTOt_rtjh5XnfvhXb3WvXbrZFAKWmAhDBG8QehfOmtpaMMVXjBnK9V8ZiI2DQZMg5QlX3i9dao7LSL8e1kCv2-NcNRHT6uYSzvcwnJcGAQvkLVP5BUw</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>Liang Bai</creator><creator>Songyang Lao</creator><creator>Jones, G.J.F.</creator><creator>Smeaton, A.F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200709</creationdate><title>Video Semantic Content Analysis based on Ontology</title><author>Liang Bai ; Songyang Lao ; Jones, G.J.F. ; Smeaton, A.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i144t-1551d855c50bd87aae88829bfebcd48a5901f6e8ebbe547cae866654a3d007603</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithm design and analysis</topic><topic>Conference management</topic><topic>Content management</topic><topic>Logic</topic><topic>MPEG 7 Standard</topic><topic>Ontologies</topic><topic>Resource description framework</topic><topic>Video on demand</topic><topic>Video sharing</topic><topic>Videoconference</topic><toplevel>online_resources</toplevel><creatorcontrib>Liang Bai</creatorcontrib><creatorcontrib>Songyang Lao</creatorcontrib><creatorcontrib>Jones, G.J.F.</creatorcontrib><creatorcontrib>Smeaton, A.F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liang Bai</au><au>Songyang Lao</au><au>Jones, G.J.F.</au><au>Smeaton, A.F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Video Semantic Content Analysis based on Ontology</atitle><btitle>International Machine Vision and Image Processing Conference (IMVIP 2007)</btitle><stitle>IMVIP</stitle><date>2007-09</date><risdate>2007</risdate><spage>117</spage><epage>124</epage><pages>117-124</pages><isbn>0769528872</isbn><isbn>9780769528878</isbn><abstract>The rapid increase in the available amount of video data is creating a growing demand for efficient methods for understanding and managing it at the semantic level. New multimedia standards, such as MPEG-4 and MPEG-7, provide the basic functionalities in order to manipulate and transmit objects and metadata. But importantly, most of the content of video data at a semantic level is out of the scope of the standards. In this paper, a video semantic content analysis framework based on ontology is presented. Domain ontology is used to define high level semantic concepts and their relations in the context of the examined domain. And low-level features (e.g. visual and aural) and video content analysis algorithms are integrated into the ontology to enrich video semantic analysis. OWL is used for the ontology description. Rules in Description Logic are defined to describe how features and algorithms for video analysis should be applied according to different perception content and low-level features. Temporal Description Logic is used to describe the semantic events, and a reasoning algorithm is proposed for events detection. The proposed framework is demonstrated in a soccer video domain and shows promising results.</abstract><pub>IEEE</pub><doi>10.1109/IMVIP.2007.13</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0769528872 |
ispartof | International Machine Vision and Image Processing Conference (IMVIP 2007), 2007, p.117-124 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4318145 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Conference management Content management Logic MPEG 7 Standard Ontologies Resource description framework Video on demand Video sharing Videoconference |
title | Video Semantic Content Analysis based on Ontology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T00%3A17%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Video%20Semantic%20Content%20Analysis%20based%20on%20Ontology&rft.btitle=International%20Machine%20Vision%20and%20Image%20Processing%20Conference%20(IMVIP%202007)&rft.au=Liang%20Bai&rft.date=2007-09&rft.spage=117&rft.epage=124&rft.pages=117-124&rft.isbn=0769528872&rft.isbn_list=9780769528878&rft_id=info:doi/10.1109/IMVIP.2007.13&rft_dat=%3Cieee_6IE%3E4318145%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4318145&rfr_iscdi=true |