Robust Region-of-Interest Determination Based on User Attention Model Through Visual Rhythm Analysis

This paper investigates a user attention model based on the visual rhythm analysis for automatically determining the region-of-interest (ROI) in a video. The visual rhythm, an abstraction of a video, is a thumbnail version of a fully video by a 2D image that captures the temporal information of a vi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ming-Chieh Chi, Chia-Hung Yeh, Mei-Juan Chen, Ching-Ting Hsu
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1148
container_issue
container_start_page 1143
container_title
container_volume
creator Ming-Chieh Chi
Chia-Hung Yeh
Mei-Juan Chen
Ching-Ting Hsu
description This paper investigates a user attention model based on the visual rhythm analysis for automatically determining the region-of-interest (ROI) in a video. The visual rhythm, an abstraction of a video, is a thumbnail version of a fully video by a 2D image that captures the temporal information of a video sequence. Four sampling lines, including diagonal, anti-diagonal, vertical and horizontal lines, are employed to obtain four visual rhythm maps in order to analyze the location of the ROI from video data. Via the variation on visual rhythms, object and camera motions can be efficiently distinguished. The proposed scheme can extract the ROI accurately with very low computational complexity. The promising results from the experiments demonstrate that the moving object is effectively and efficiently extracted.
doi_str_mv 10.1109/ICCCN.2007.4317973
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4317973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4317973</ieee_id><sourcerecordid>4317973</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-3354696290176e43c7f22c4d0d166e3f2d38bb03d0c8aef5aaa53bbfce9244833</originalsourceid><addsrcrecordid>eNo1kMtOwzAURM1LopT-AGz8Ay5-xvGyhFelAlLVInaVE980RmmCYnfRv8e8VjOakY7uXISuGJ0yRs3NvCiKlymnVE-lYNpocYQumORSMq7Y-zEa8UxoYqSgJ2hidP7fUXaKRomgCKdKnaNJCB-UUqYzmcAj5JZ9uQ8RL2Hr-470NZl3EQZI0R0ks_OdjanBtzaAw8msAwx4FiN0P_lz76DFq2bo99sGv_mwty1eNofY7PCss-0h-HCJzmrbBpj86RitH-5XxRNZvD7Oi9mCeKZVJEIomZmMm-_zQIpK15xX0lHHsgxEzZ3Iy5IKR6vcQq2stUqUZV2BSWNzIcbo-pfrAWDzOfidHQ6bv4eJL-PtW30</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Robust Region-of-Interest Determination Based on User Attention Model Through Visual Rhythm Analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ming-Chieh Chi ; Chia-Hung Yeh ; Mei-Juan Chen ; Ching-Ting Hsu</creator><creatorcontrib>Ming-Chieh Chi ; Chia-Hung Yeh ; Mei-Juan Chen ; Ching-Ting Hsu</creatorcontrib><description>This paper investigates a user attention model based on the visual rhythm analysis for automatically determining the region-of-interest (ROI) in a video. The visual rhythm, an abstraction of a video, is a thumbnail version of a fully video by a 2D image that captures the temporal information of a video sequence. Four sampling lines, including diagonal, anti-diagonal, vertical and horizontal lines, are employed to obtain four visual rhythm maps in order to analyze the location of the ROI from video data. Via the variation on visual rhythms, object and camera motions can be efficiently distinguished. The proposed scheme can extract the ROI accurately with very low computational complexity. The promising results from the experiments demonstrate that the moving object is effectively and efficiently extracted.</description><identifier>ISSN: 1095-2055</identifier><identifier>ISBN: 9781424412501</identifier><identifier>ISBN: 1424412501</identifier><identifier>EISSN: 2637-9430</identifier><identifier>EISBN: 142441251X</identifier><identifier>EISBN: 9781424412518</identifier><identifier>DOI: 10.1109/ICCCN.2007.4317973</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data mining ; Encoding ; Face detection ; Layout ; Motion estimation ; Rhythm ; Robustness ; Skin ; Statistics ; Surveillance</subject><ispartof>2007 16th International Conference on Computer Communications and Networks, 2007, p.1143-1148</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4317973$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27912,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4317973$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ming-Chieh Chi</creatorcontrib><creatorcontrib>Chia-Hung Yeh</creatorcontrib><creatorcontrib>Mei-Juan Chen</creatorcontrib><creatorcontrib>Ching-Ting Hsu</creatorcontrib><title>Robust Region-of-Interest Determination Based on User Attention Model Through Visual Rhythm Analysis</title><title>2007 16th International Conference on Computer Communications and Networks</title><addtitle>ICCCN</addtitle><description>This paper investigates a user attention model based on the visual rhythm analysis for automatically determining the region-of-interest (ROI) in a video. The visual rhythm, an abstraction of a video, is a thumbnail version of a fully video by a 2D image that captures the temporal information of a video sequence. Four sampling lines, including diagonal, anti-diagonal, vertical and horizontal lines, are employed to obtain four visual rhythm maps in order to analyze the location of the ROI from video data. Via the variation on visual rhythms, object and camera motions can be efficiently distinguished. The proposed scheme can extract the ROI accurately with very low computational complexity. The promising results from the experiments demonstrate that the moving object is effectively and efficiently extracted.</description><subject>Data mining</subject><subject>Encoding</subject><subject>Face detection</subject><subject>Layout</subject><subject>Motion estimation</subject><subject>Rhythm</subject><subject>Robustness</subject><subject>Skin</subject><subject>Statistics</subject><subject>Surveillance</subject><issn>1095-2055</issn><issn>2637-9430</issn><isbn>9781424412501</isbn><isbn>1424412501</isbn><isbn>142441251X</isbn><isbn>9781424412518</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMtOwzAURM1LopT-AGz8Ay5-xvGyhFelAlLVInaVE980RmmCYnfRv8e8VjOakY7uXISuGJ0yRs3NvCiKlymnVE-lYNpocYQumORSMq7Y-zEa8UxoYqSgJ2hidP7fUXaKRomgCKdKnaNJCB-UUqYzmcAj5JZ9uQ8RL2Hr-470NZl3EQZI0R0ks_OdjanBtzaAw8msAwx4FiN0P_lz76DFq2bo99sGv_mwty1eNofY7PCss-0h-HCJzmrbBpj86RitH-5XxRNZvD7Oi9mCeKZVJEIomZmMm-_zQIpK15xX0lHHsgxEzZ3Iy5IKR6vcQq2stUqUZV2BSWNzIcbo-pfrAWDzOfidHQ6bv4eJL-PtW30</recordid><startdate>200708</startdate><enddate>200708</enddate><creator>Ming-Chieh Chi</creator><creator>Chia-Hung Yeh</creator><creator>Mei-Juan Chen</creator><creator>Ching-Ting Hsu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200708</creationdate><title>Robust Region-of-Interest Determination Based on User Attention Model Through Visual Rhythm Analysis</title><author>Ming-Chieh Chi ; Chia-Hung Yeh ; Mei-Juan Chen ; Ching-Ting Hsu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-3354696290176e43c7f22c4d0d166e3f2d38bb03d0c8aef5aaa53bbfce9244833</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Data mining</topic><topic>Encoding</topic><topic>Face detection</topic><topic>Layout</topic><topic>Motion estimation</topic><topic>Rhythm</topic><topic>Robustness</topic><topic>Skin</topic><topic>Statistics</topic><topic>Surveillance</topic><toplevel>online_resources</toplevel><creatorcontrib>Ming-Chieh Chi</creatorcontrib><creatorcontrib>Chia-Hung Yeh</creatorcontrib><creatorcontrib>Mei-Juan Chen</creatorcontrib><creatorcontrib>Ching-Ting Hsu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ming-Chieh Chi</au><au>Chia-Hung Yeh</au><au>Mei-Juan Chen</au><au>Ching-Ting Hsu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Robust Region-of-Interest Determination Based on User Attention Model Through Visual Rhythm Analysis</atitle><btitle>2007 16th International Conference on Computer Communications and Networks</btitle><stitle>ICCCN</stitle><date>2007-08</date><risdate>2007</risdate><spage>1143</spage><epage>1148</epage><pages>1143-1148</pages><issn>1095-2055</issn><eissn>2637-9430</eissn><isbn>9781424412501</isbn><isbn>1424412501</isbn><eisbn>142441251X</eisbn><eisbn>9781424412518</eisbn><abstract>This paper investigates a user attention model based on the visual rhythm analysis for automatically determining the region-of-interest (ROI) in a video. The visual rhythm, an abstraction of a video, is a thumbnail version of a fully video by a 2D image that captures the temporal information of a video sequence. Four sampling lines, including diagonal, anti-diagonal, vertical and horizontal lines, are employed to obtain four visual rhythm maps in order to analyze the location of the ROI from video data. Via the variation on visual rhythms, object and camera motions can be efficiently distinguished. The proposed scheme can extract the ROI accurately with very low computational complexity. The promising results from the experiments demonstrate that the moving object is effectively and efficiently extracted.</abstract><pub>IEEE</pub><doi>10.1109/ICCCN.2007.4317973</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1095-2055
ispartof 2007 16th International Conference on Computer Communications and Networks, 2007, p.1143-1148
issn 1095-2055
2637-9430
language eng
recordid cdi_ieee_primary_4317973
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Data mining
Encoding
Face detection
Layout
Motion estimation
Rhythm
Robustness
Skin
Statistics
Surveillance
title Robust Region-of-Interest Determination Based on User Attention Model Through Visual Rhythm Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T04%3A12%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Robust%20Region-of-Interest%20Determination%20Based%20on%20User%20Attention%20Model%20Through%20Visual%20Rhythm%20Analysis&rft.btitle=2007%2016th%20International%20Conference%20on%20Computer%20Communications%20and%20Networks&rft.au=Ming-Chieh%20Chi&rft.date=2007-08&rft.spage=1143&rft.epage=1148&rft.pages=1143-1148&rft.issn=1095-2055&rft.eissn=2637-9430&rft.isbn=9781424412501&rft.isbn_list=1424412501&rft_id=info:doi/10.1109/ICCCN.2007.4317973&rft_dat=%3Cieee_6IE%3E4317973%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=142441251X&rft.eisbn_list=9781424412518&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4317973&rfr_iscdi=true