Robust Region-of-Interest Determination Based on User Attention Model Through Visual Rhythm Analysis
This paper investigates a user attention model based on the visual rhythm analysis for automatically determining the region-of-interest (ROI) in a video. The visual rhythm, an abstraction of a video, is a thumbnail version of a fully video by a 2D image that captures the temporal information of a vi...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1148 |
---|---|
container_issue | |
container_start_page | 1143 |
container_title | |
container_volume | |
creator | Ming-Chieh Chi Chia-Hung Yeh Mei-Juan Chen Ching-Ting Hsu |
description | This paper investigates a user attention model based on the visual rhythm analysis for automatically determining the region-of-interest (ROI) in a video. The visual rhythm, an abstraction of a video, is a thumbnail version of a fully video by a 2D image that captures the temporal information of a video sequence. Four sampling lines, including diagonal, anti-diagonal, vertical and horizontal lines, are employed to obtain four visual rhythm maps in order to analyze the location of the ROI from video data. Via the variation on visual rhythms, object and camera motions can be efficiently distinguished. The proposed scheme can extract the ROI accurately with very low computational complexity. The promising results from the experiments demonstrate that the moving object is effectively and efficiently extracted. |
doi_str_mv | 10.1109/ICCCN.2007.4317973 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4317973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4317973</ieee_id><sourcerecordid>4317973</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-3354696290176e43c7f22c4d0d166e3f2d38bb03d0c8aef5aaa53bbfce9244833</originalsourceid><addsrcrecordid>eNo1kMtOwzAURM1LopT-AGz8Ay5-xvGyhFelAlLVInaVE980RmmCYnfRv8e8VjOakY7uXISuGJ0yRs3NvCiKlymnVE-lYNpocYQumORSMq7Y-zEa8UxoYqSgJ2hidP7fUXaKRomgCKdKnaNJCB-UUqYzmcAj5JZ9uQ8RL2Hr-470NZl3EQZI0R0ks_OdjanBtzaAw8msAwx4FiN0P_lz76DFq2bo99sGv_mwty1eNofY7PCss-0h-HCJzmrbBpj86RitH-5XxRNZvD7Oi9mCeKZVJEIomZmMm-_zQIpK15xX0lHHsgxEzZ3Iy5IKR6vcQq2stUqUZV2BSWNzIcbo-pfrAWDzOfidHQ6bv4eJL-PtW30</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Robust Region-of-Interest Determination Based on User Attention Model Through Visual Rhythm Analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ming-Chieh Chi ; Chia-Hung Yeh ; Mei-Juan Chen ; Ching-Ting Hsu</creator><creatorcontrib>Ming-Chieh Chi ; Chia-Hung Yeh ; Mei-Juan Chen ; Ching-Ting Hsu</creatorcontrib><description>This paper investigates a user attention model based on the visual rhythm analysis for automatically determining the region-of-interest (ROI) in a video. The visual rhythm, an abstraction of a video, is a thumbnail version of a fully video by a 2D image that captures the temporal information of a video sequence. Four sampling lines, including diagonal, anti-diagonal, vertical and horizontal lines, are employed to obtain four visual rhythm maps in order to analyze the location of the ROI from video data. Via the variation on visual rhythms, object and camera motions can be efficiently distinguished. The proposed scheme can extract the ROI accurately with very low computational complexity. The promising results from the experiments demonstrate that the moving object is effectively and efficiently extracted.</description><identifier>ISSN: 1095-2055</identifier><identifier>ISBN: 9781424412501</identifier><identifier>ISBN: 1424412501</identifier><identifier>EISSN: 2637-9430</identifier><identifier>EISBN: 142441251X</identifier><identifier>EISBN: 9781424412518</identifier><identifier>DOI: 10.1109/ICCCN.2007.4317973</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data mining ; Encoding ; Face detection ; Layout ; Motion estimation ; Rhythm ; Robustness ; Skin ; Statistics ; Surveillance</subject><ispartof>2007 16th International Conference on Computer Communications and Networks, 2007, p.1143-1148</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4317973$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27912,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4317973$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ming-Chieh Chi</creatorcontrib><creatorcontrib>Chia-Hung Yeh</creatorcontrib><creatorcontrib>Mei-Juan Chen</creatorcontrib><creatorcontrib>Ching-Ting Hsu</creatorcontrib><title>Robust Region-of-Interest Determination Based on User Attention Model Through Visual Rhythm Analysis</title><title>2007 16th International Conference on Computer Communications and Networks</title><addtitle>ICCCN</addtitle><description>This paper investigates a user attention model based on the visual rhythm analysis for automatically determining the region-of-interest (ROI) in a video. The visual rhythm, an abstraction of a video, is a thumbnail version of a fully video by a 2D image that captures the temporal information of a video sequence. Four sampling lines, including diagonal, anti-diagonal, vertical and horizontal lines, are employed to obtain four visual rhythm maps in order to analyze the location of the ROI from video data. Via the variation on visual rhythms, object and camera motions can be efficiently distinguished. The proposed scheme can extract the ROI accurately with very low computational complexity. The promising results from the experiments demonstrate that the moving object is effectively and efficiently extracted.</description><subject>Data mining</subject><subject>Encoding</subject><subject>Face detection</subject><subject>Layout</subject><subject>Motion estimation</subject><subject>Rhythm</subject><subject>Robustness</subject><subject>Skin</subject><subject>Statistics</subject><subject>Surveillance</subject><issn>1095-2055</issn><issn>2637-9430</issn><isbn>9781424412501</isbn><isbn>1424412501</isbn><isbn>142441251X</isbn><isbn>9781424412518</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMtOwzAURM1LopT-AGz8Ay5-xvGyhFelAlLVInaVE980RmmCYnfRv8e8VjOakY7uXISuGJ0yRs3NvCiKlymnVE-lYNpocYQumORSMq7Y-zEa8UxoYqSgJ2hidP7fUXaKRomgCKdKnaNJCB-UUqYzmcAj5JZ9uQ8RL2Hr-470NZl3EQZI0R0ks_OdjanBtzaAw8msAwx4FiN0P_lz76DFq2bo99sGv_mwty1eNofY7PCss-0h-HCJzmrbBpj86RitH-5XxRNZvD7Oi9mCeKZVJEIomZmMm-_zQIpK15xX0lHHsgxEzZ3Iy5IKR6vcQq2stUqUZV2BSWNzIcbo-pfrAWDzOfidHQ6bv4eJL-PtW30</recordid><startdate>200708</startdate><enddate>200708</enddate><creator>Ming-Chieh Chi</creator><creator>Chia-Hung Yeh</creator><creator>Mei-Juan Chen</creator><creator>Ching-Ting Hsu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200708</creationdate><title>Robust Region-of-Interest Determination Based on User Attention Model Through Visual Rhythm Analysis</title><author>Ming-Chieh Chi ; Chia-Hung Yeh ; Mei-Juan Chen ; Ching-Ting Hsu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-3354696290176e43c7f22c4d0d166e3f2d38bb03d0c8aef5aaa53bbfce9244833</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Data mining</topic><topic>Encoding</topic><topic>Face detection</topic><topic>Layout</topic><topic>Motion estimation</topic><topic>Rhythm</topic><topic>Robustness</topic><topic>Skin</topic><topic>Statistics</topic><topic>Surveillance</topic><toplevel>online_resources</toplevel><creatorcontrib>Ming-Chieh Chi</creatorcontrib><creatorcontrib>Chia-Hung Yeh</creatorcontrib><creatorcontrib>Mei-Juan Chen</creatorcontrib><creatorcontrib>Ching-Ting Hsu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ming-Chieh Chi</au><au>Chia-Hung Yeh</au><au>Mei-Juan Chen</au><au>Ching-Ting Hsu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Robust Region-of-Interest Determination Based on User Attention Model Through Visual Rhythm Analysis</atitle><btitle>2007 16th International Conference on Computer Communications and Networks</btitle><stitle>ICCCN</stitle><date>2007-08</date><risdate>2007</risdate><spage>1143</spage><epage>1148</epage><pages>1143-1148</pages><issn>1095-2055</issn><eissn>2637-9430</eissn><isbn>9781424412501</isbn><isbn>1424412501</isbn><eisbn>142441251X</eisbn><eisbn>9781424412518</eisbn><abstract>This paper investigates a user attention model based on the visual rhythm analysis for automatically determining the region-of-interest (ROI) in a video. The visual rhythm, an abstraction of a video, is a thumbnail version of a fully video by a 2D image that captures the temporal information of a video sequence. Four sampling lines, including diagonal, anti-diagonal, vertical and horizontal lines, are employed to obtain four visual rhythm maps in order to analyze the location of the ROI from video data. Via the variation on visual rhythms, object and camera motions can be efficiently distinguished. The proposed scheme can extract the ROI accurately with very low computational complexity. The promising results from the experiments demonstrate that the moving object is effectively and efficiently extracted.</abstract><pub>IEEE</pub><doi>10.1109/ICCCN.2007.4317973</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1095-2055 |
ispartof | 2007 16th International Conference on Computer Communications and Networks, 2007, p.1143-1148 |
issn | 1095-2055 2637-9430 |
language | eng |
recordid | cdi_ieee_primary_4317973 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Data mining Encoding Face detection Layout Motion estimation Rhythm Robustness Skin Statistics Surveillance |
title | Robust Region-of-Interest Determination Based on User Attention Model Through Visual Rhythm Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T04%3A12%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Robust%20Region-of-Interest%20Determination%20Based%20on%20User%20Attention%20Model%20Through%20Visual%20Rhythm%20Analysis&rft.btitle=2007%2016th%20International%20Conference%20on%20Computer%20Communications%20and%20Networks&rft.au=Ming-Chieh%20Chi&rft.date=2007-08&rft.spage=1143&rft.epage=1148&rft.pages=1143-1148&rft.issn=1095-2055&rft.eissn=2637-9430&rft.isbn=9781424412501&rft.isbn_list=1424412501&rft_id=info:doi/10.1109/ICCCN.2007.4317973&rft_dat=%3Cieee_6IE%3E4317973%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=142441251X&rft.eisbn_list=9781424412518&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4317973&rfr_iscdi=true |