Assembly Process Planning Using a Multi-objective Optimization Method

Assembly process planning is a multi-objective optimization problem. Aiming to deal with such a complex multi-objective optimization problem, a new Pareto-based multi-objective evolutionary algorithm with fuzzy evaluating method is constructed in this paper. The optimization model of assembly proces...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Qin yong-fa, Xu zhi-gang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 598
container_issue
container_start_page 593
container_title
container_volume
creator Qin yong-fa
Xu zhi-gang
description Assembly process planning is a multi-objective optimization problem. Aiming to deal with such a complex multi-objective optimization problem, a new Pareto-based multi-objective evolutionary algorithm with fuzzy evaluating method is constructed in this paper. The optimization model of assembly process planning is established. Several key technology, such as Pareto optimal front, solution ranking method are described. A fuzzy evaluating method for Pareto optimal front is proposed, and GASA (hybrids genetic algorithms and simulated annealing algorithms) optimization strategy is applied in the proposed algorithms. A program, called MOGASA (multi-objective optimization program using GASA algorithms) is developed based on the algorithms to solve assembly process planning problem. A computation example is presented in the paper.
doi_str_mv 10.1109/ICMA.2007.4303610
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4303610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4303610</ieee_id><sourcerecordid>4303610</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-47a823f3e23e45efe3d56c149346b1ba31c0d9733467fbba581f8af46cf0084c3</originalsourceid><addsrcrecordid>eNpVkM1Kw0AUhcc_sNQ8gLjJCyTOzL3JTJYh1FpoaBcW3JVJcken5Kd0olCf3opF8CzO4fDBWRzG7gWPheDZ46Io81hyrmIEDqngFyzIlBYoEbmWGi7ZRIpERgrx9eofU-n1HwNxywLvd_wkyJIU9YTNcu-pq9pjuD4MNXkfrlvT965_Czf-x01YfrSji4ZqR_XoPilc7UfXuS8zuqEPSxrfh-aO3VjTegrOOWWbp9lL8RwtV_NFkS8jJ1QyRqiMlmCBJBAmZAmaJK0FZoBpJSoDouZNpuBUla0qk2hhtbGY1pZzjTVM2cPvriOi7f7gOnM4bs-nwDeNVlCU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Assembly Process Planning Using a Multi-objective Optimization Method</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Qin yong-fa ; Xu zhi-gang</creator><creatorcontrib>Qin yong-fa ; Xu zhi-gang</creatorcontrib><description>Assembly process planning is a multi-objective optimization problem. Aiming to deal with such a complex multi-objective optimization problem, a new Pareto-based multi-objective evolutionary algorithm with fuzzy evaluating method is constructed in this paper. The optimization model of assembly process planning is established. Several key technology, such as Pareto optimal front, solution ranking method are described. A fuzzy evaluating method for Pareto optimal front is proposed, and GASA (hybrids genetic algorithms and simulated annealing algorithms) optimization strategy is applied in the proposed algorithms. A program, called MOGASA (multi-objective optimization program using GASA algorithms) is developed based on the algorithms to solve assembly process planning problem. A computation example is presented in the paper.</description><identifier>ISSN: 2152-7431</identifier><identifier>ISBN: 9781424408276</identifier><identifier>ISBN: 142440827X</identifier><identifier>EISSN: 2152-744X</identifier><identifier>EISBN: 9781424408283</identifier><identifier>EISBN: 1424408288</identifier><identifier>DOI: 10.1109/ICMA.2007.4303610</identifier><language>eng</language><publisher>IEEE</publisher><subject>Assembly process planning ; Automation ; Design optimization ; Evolutionary computation ; Fuzzy evaluating ; Genetic algorithms ; Manufacturing ; Mechatronics ; Multi-objective evolutionary optimization ; Optimization methods ; Pareto optimal front ; Pareto optimization ; Process planning ; Robotic assembly</subject><ispartof>2007 International Conference on Mechatronics and Automation, 2007, p.593-598</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4303610$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4303610$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qin yong-fa</creatorcontrib><creatorcontrib>Xu zhi-gang</creatorcontrib><title>Assembly Process Planning Using a Multi-objective Optimization Method</title><title>2007 International Conference on Mechatronics and Automation</title><addtitle>ICMA</addtitle><description>Assembly process planning is a multi-objective optimization problem. Aiming to deal with such a complex multi-objective optimization problem, a new Pareto-based multi-objective evolutionary algorithm with fuzzy evaluating method is constructed in this paper. The optimization model of assembly process planning is established. Several key technology, such as Pareto optimal front, solution ranking method are described. A fuzzy evaluating method for Pareto optimal front is proposed, and GASA (hybrids genetic algorithms and simulated annealing algorithms) optimization strategy is applied in the proposed algorithms. A program, called MOGASA (multi-objective optimization program using GASA algorithms) is developed based on the algorithms to solve assembly process planning problem. A computation example is presented in the paper.</description><subject>Assembly process planning</subject><subject>Automation</subject><subject>Design optimization</subject><subject>Evolutionary computation</subject><subject>Fuzzy evaluating</subject><subject>Genetic algorithms</subject><subject>Manufacturing</subject><subject>Mechatronics</subject><subject>Multi-objective evolutionary optimization</subject><subject>Optimization methods</subject><subject>Pareto optimal front</subject><subject>Pareto optimization</subject><subject>Process planning</subject><subject>Robotic assembly</subject><issn>2152-7431</issn><issn>2152-744X</issn><isbn>9781424408276</isbn><isbn>142440827X</isbn><isbn>9781424408283</isbn><isbn>1424408288</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkM1Kw0AUhcc_sNQ8gLjJCyTOzL3JTJYh1FpoaBcW3JVJcken5Kd0olCf3opF8CzO4fDBWRzG7gWPheDZ46Io81hyrmIEDqngFyzIlBYoEbmWGi7ZRIpERgrx9eofU-n1HwNxywLvd_wkyJIU9YTNcu-pq9pjuD4MNXkfrlvT965_Czf-x01YfrSji4ZqR_XoPilc7UfXuS8zuqEPSxrfh-aO3VjTegrOOWWbp9lL8RwtV_NFkS8jJ1QyRqiMlmCBJBAmZAmaJK0FZoBpJSoDouZNpuBUla0qk2hhtbGY1pZzjTVM2cPvriOi7f7gOnM4bs-nwDeNVlCU</recordid><startdate>200708</startdate><enddate>200708</enddate><creator>Qin yong-fa</creator><creator>Xu zhi-gang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200708</creationdate><title>Assembly Process Planning Using a Multi-objective Optimization Method</title><author>Qin yong-fa ; Xu zhi-gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-47a823f3e23e45efe3d56c149346b1ba31c0d9733467fbba581f8af46cf0084c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Assembly process planning</topic><topic>Automation</topic><topic>Design optimization</topic><topic>Evolutionary computation</topic><topic>Fuzzy evaluating</topic><topic>Genetic algorithms</topic><topic>Manufacturing</topic><topic>Mechatronics</topic><topic>Multi-objective evolutionary optimization</topic><topic>Optimization methods</topic><topic>Pareto optimal front</topic><topic>Pareto optimization</topic><topic>Process planning</topic><topic>Robotic assembly</topic><toplevel>online_resources</toplevel><creatorcontrib>Qin yong-fa</creatorcontrib><creatorcontrib>Xu zhi-gang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qin yong-fa</au><au>Xu zhi-gang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Assembly Process Planning Using a Multi-objective Optimization Method</atitle><btitle>2007 International Conference on Mechatronics and Automation</btitle><stitle>ICMA</stitle><date>2007-08</date><risdate>2007</risdate><spage>593</spage><epage>598</epage><pages>593-598</pages><issn>2152-7431</issn><eissn>2152-744X</eissn><isbn>9781424408276</isbn><isbn>142440827X</isbn><eisbn>9781424408283</eisbn><eisbn>1424408288</eisbn><abstract>Assembly process planning is a multi-objective optimization problem. Aiming to deal with such a complex multi-objective optimization problem, a new Pareto-based multi-objective evolutionary algorithm with fuzzy evaluating method is constructed in this paper. The optimization model of assembly process planning is established. Several key technology, such as Pareto optimal front, solution ranking method are described. A fuzzy evaluating method for Pareto optimal front is proposed, and GASA (hybrids genetic algorithms and simulated annealing algorithms) optimization strategy is applied in the proposed algorithms. A program, called MOGASA (multi-objective optimization program using GASA algorithms) is developed based on the algorithms to solve assembly process planning problem. A computation example is presented in the paper.</abstract><pub>IEEE</pub><doi>10.1109/ICMA.2007.4303610</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2152-7431
ispartof 2007 International Conference on Mechatronics and Automation, 2007, p.593-598
issn 2152-7431
2152-744X
language eng
recordid cdi_ieee_primary_4303610
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Assembly process planning
Automation
Design optimization
Evolutionary computation
Fuzzy evaluating
Genetic algorithms
Manufacturing
Mechatronics
Multi-objective evolutionary optimization
Optimization methods
Pareto optimal front
Pareto optimization
Process planning
Robotic assembly
title Assembly Process Planning Using a Multi-objective Optimization Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A31%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Assembly%20Process%20Planning%20Using%20a%20Multi-objective%20Optimization%20Method&rft.btitle=2007%20International%20Conference%20on%20Mechatronics%20and%20Automation&rft.au=Qin%20yong-fa&rft.date=2007-08&rft.spage=593&rft.epage=598&rft.pages=593-598&rft.issn=2152-7431&rft.eissn=2152-744X&rft.isbn=9781424408276&rft.isbn_list=142440827X&rft_id=info:doi/10.1109/ICMA.2007.4303610&rft_dat=%3Cieee_6IE%3E4303610%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424408283&rft.eisbn_list=1424408288&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4303610&rfr_iscdi=true