Signal Processing Techniques and Statistics for the Analysis of Human Genome Associated with Behavior Abnormalities

Almost all human genetic diseases such as cancers and developmental abnormalities are characterized by the presence of genetic variations. Microrray-based Comparative Genomic Hybridization techniques are used to map and measure DNA copy number variations with high-resolution. However, the observed c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Alqallaf, Abdullah K., Tewfik, Ahmed H.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 38
container_issue
container_start_page 36
container_title
container_volume
creator Alqallaf, Abdullah K.
Tewfik, Ahmed H.
description Almost all human genetic diseases such as cancers and developmental abnormalities are characterized by the presence of genetic variations. Microrray-based Comparative Genomic Hybridization techniques are used to map and measure DNA copy number variations with high-resolution. However, the observed copy numbers are corrupted by noise, making variations breakpoints hard to detect. In this paper, we provide a framework for the analysis of copy number datasets and it is divided into two parts. In the first part, we propose a novel image processing technique to analyze copy number variations based on extended version of Sigma filter algorithm as pre-processing technique. In the second part, we provide statistical searching model for classifying nonrandom genomic variations across multiple samples. Finally, we provide simulated and real data samples to study this effect.
doi_str_mv 10.1109/SSP.2007.4301213
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4301213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4301213</ieee_id><sourcerecordid>4301213</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-6bf4ebc17ab37a67c7d94b35644567574e44abb51df63ba65588655068a5ceea3</originalsourceid><addsrcrecordid>eNpVkD1PwzAYhM2XRFWyI7H4D6TY8Vc8lgpapEpUSpmr18mbxqhJIHZB_fdEogs33A2P7oYj5J6zGefMPhbFZpYxZmZSMJ5xcUESa3IuMyk5t7m-JJNMW5EKpfjVP2bs9ciEESnLmbglSQgfbJSwWmg7IaHw-w4OdDP0JYbguz3dYtl0_uuIgUJX0SJC9CH6MtC6H2hskM7Hxin4QPuaro4tdHSJXd-OIIS-9BCxoj8-NvQJG_j2Y2vuun5o4eCjx3BHbmo4BEzOOSXvL8_bxSpdvy1fF_N16rlRMdWuluhKbsAJA9qUprLSCaWlVNooI1FKcE7xqtbCgVYqz0djOgdVIoKYkoe_XY-Iu8_BtzCcducLxS_B62F5</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Signal Processing Techniques and Statistics for the Analysis of Human Genome Associated with Behavior Abnormalities</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Alqallaf, Abdullah K. ; Tewfik, Ahmed H.</creator><creatorcontrib>Alqallaf, Abdullah K. ; Tewfik, Ahmed H.</creatorcontrib><description>Almost all human genetic diseases such as cancers and developmental abnormalities are characterized by the presence of genetic variations. Microrray-based Comparative Genomic Hybridization techniques are used to map and measure DNA copy number variations with high-resolution. However, the observed copy numbers are corrupted by noise, making variations breakpoints hard to detect. In this paper, we provide a framework for the analysis of copy number datasets and it is divided into two parts. In the first part, we propose a novel image processing technique to analyze copy number variations based on extended version of Sigma filter algorithm as pre-processing technique. In the second part, we provide statistical searching model for classifying nonrandom genomic variations across multiple samples. Finally, we provide simulated and real data samples to study this effect.</description><identifier>ISSN: 2373-0803</identifier><identifier>ISBN: 9781424411979</identifier><identifier>ISBN: 1424411971</identifier><identifier>EISSN: 2693-3551</identifier><identifier>EISBN: 9781424411986</identifier><identifier>EISBN: 142441198X</identifier><identifier>DOI: 10.1109/SSP.2007.4301213</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bioinformatics ; Cancer ; Comparative Genomic Hybridization ; Copy number variations ; Diseases ; DNA ; Edge-preserving ; Genetics ; Genomics ; Humans ; multiple samples ; Signal analysis ; Signal processing ; Smoothing ; Statistical analysis</subject><ispartof>2007 IEEE/SP 14th Workshop on Statistical Signal Processing, 2007, p.36-38</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4301213$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4301213$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Alqallaf, Abdullah K.</creatorcontrib><creatorcontrib>Tewfik, Ahmed H.</creatorcontrib><title>Signal Processing Techniques and Statistics for the Analysis of Human Genome Associated with Behavior Abnormalities</title><title>2007 IEEE/SP 14th Workshop on Statistical Signal Processing</title><addtitle>SSP</addtitle><description>Almost all human genetic diseases such as cancers and developmental abnormalities are characterized by the presence of genetic variations. Microrray-based Comparative Genomic Hybridization techniques are used to map and measure DNA copy number variations with high-resolution. However, the observed copy numbers are corrupted by noise, making variations breakpoints hard to detect. In this paper, we provide a framework for the analysis of copy number datasets and it is divided into two parts. In the first part, we propose a novel image processing technique to analyze copy number variations based on extended version of Sigma filter algorithm as pre-processing technique. In the second part, we provide statistical searching model for classifying nonrandom genomic variations across multiple samples. Finally, we provide simulated and real data samples to study this effect.</description><subject>Bioinformatics</subject><subject>Cancer</subject><subject>Comparative Genomic Hybridization</subject><subject>Copy number variations</subject><subject>Diseases</subject><subject>DNA</subject><subject>Edge-preserving</subject><subject>Genetics</subject><subject>Genomics</subject><subject>Humans</subject><subject>multiple samples</subject><subject>Signal analysis</subject><subject>Signal processing</subject><subject>Smoothing</subject><subject>Statistical analysis</subject><issn>2373-0803</issn><issn>2693-3551</issn><isbn>9781424411979</isbn><isbn>1424411971</isbn><isbn>9781424411986</isbn><isbn>142441198X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkD1PwzAYhM2XRFWyI7H4D6TY8Vc8lgpapEpUSpmr18mbxqhJIHZB_fdEogs33A2P7oYj5J6zGefMPhbFZpYxZmZSMJ5xcUESa3IuMyk5t7m-JJNMW5EKpfjVP2bs9ciEESnLmbglSQgfbJSwWmg7IaHw-w4OdDP0JYbguz3dYtl0_uuIgUJX0SJC9CH6MtC6H2hskM7Hxin4QPuaro4tdHSJXd-OIIS-9BCxoj8-NvQJG_j2Y2vuun5o4eCjx3BHbmo4BEzOOSXvL8_bxSpdvy1fF_N16rlRMdWuluhKbsAJA9qUprLSCaWlVNooI1FKcE7xqtbCgVYqz0djOgdVIoKYkoe_XY-Iu8_BtzCcducLxS_B62F5</recordid><startdate>200708</startdate><enddate>200708</enddate><creator>Alqallaf, Abdullah K.</creator><creator>Tewfik, Ahmed H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200708</creationdate><title>Signal Processing Techniques and Statistics for the Analysis of Human Genome Associated with Behavior Abnormalities</title><author>Alqallaf, Abdullah K. ; Tewfik, Ahmed H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-6bf4ebc17ab37a67c7d94b35644567574e44abb51df63ba65588655068a5ceea3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Bioinformatics</topic><topic>Cancer</topic><topic>Comparative Genomic Hybridization</topic><topic>Copy number variations</topic><topic>Diseases</topic><topic>DNA</topic><topic>Edge-preserving</topic><topic>Genetics</topic><topic>Genomics</topic><topic>Humans</topic><topic>multiple samples</topic><topic>Signal analysis</topic><topic>Signal processing</topic><topic>Smoothing</topic><topic>Statistical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Alqallaf, Abdullah K.</creatorcontrib><creatorcontrib>Tewfik, Ahmed H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Alqallaf, Abdullah K.</au><au>Tewfik, Ahmed H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Signal Processing Techniques and Statistics for the Analysis of Human Genome Associated with Behavior Abnormalities</atitle><btitle>2007 IEEE/SP 14th Workshop on Statistical Signal Processing</btitle><stitle>SSP</stitle><date>2007-08</date><risdate>2007</risdate><spage>36</spage><epage>38</epage><pages>36-38</pages><issn>2373-0803</issn><eissn>2693-3551</eissn><isbn>9781424411979</isbn><isbn>1424411971</isbn><eisbn>9781424411986</eisbn><eisbn>142441198X</eisbn><abstract>Almost all human genetic diseases such as cancers and developmental abnormalities are characterized by the presence of genetic variations. Microrray-based Comparative Genomic Hybridization techniques are used to map and measure DNA copy number variations with high-resolution. However, the observed copy numbers are corrupted by noise, making variations breakpoints hard to detect. In this paper, we provide a framework for the analysis of copy number datasets and it is divided into two parts. In the first part, we propose a novel image processing technique to analyze copy number variations based on extended version of Sigma filter algorithm as pre-processing technique. In the second part, we provide statistical searching model for classifying nonrandom genomic variations across multiple samples. Finally, we provide simulated and real data samples to study this effect.</abstract><pub>IEEE</pub><doi>10.1109/SSP.2007.4301213</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2373-0803
ispartof 2007 IEEE/SP 14th Workshop on Statistical Signal Processing, 2007, p.36-38
issn 2373-0803
2693-3551
language eng
recordid cdi_ieee_primary_4301213
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bioinformatics
Cancer
Comparative Genomic Hybridization
Copy number variations
Diseases
DNA
Edge-preserving
Genetics
Genomics
Humans
multiple samples
Signal analysis
Signal processing
Smoothing
Statistical analysis
title Signal Processing Techniques and Statistics for the Analysis of Human Genome Associated with Behavior Abnormalities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A45%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Signal%20Processing%20Techniques%20and%20Statistics%20for%20the%20Analysis%20of%20Human%20Genome%20Associated%20with%20Behavior%20Abnormalities&rft.btitle=2007%20IEEE/SP%2014th%20Workshop%20on%20Statistical%20Signal%20Processing&rft.au=Alqallaf,%20Abdullah%20K.&rft.date=2007-08&rft.spage=36&rft.epage=38&rft.pages=36-38&rft.issn=2373-0803&rft.eissn=2693-3551&rft.isbn=9781424411979&rft.isbn_list=1424411971&rft_id=info:doi/10.1109/SSP.2007.4301213&rft_dat=%3Cieee_6IE%3E4301213%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424411986&rft.eisbn_list=142441198X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4301213&rfr_iscdi=true