Signal Processing Techniques and Statistics for the Analysis of Human Genome Associated with Behavior Abnormalities
Almost all human genetic diseases such as cancers and developmental abnormalities are characterized by the presence of genetic variations. Microrray-based Comparative Genomic Hybridization techniques are used to map and measure DNA copy number variations with high-resolution. However, the observed c...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 38 |
---|---|
container_issue | |
container_start_page | 36 |
container_title | |
container_volume | |
creator | Alqallaf, Abdullah K. Tewfik, Ahmed H. |
description | Almost all human genetic diseases such as cancers and developmental abnormalities are characterized by the presence of genetic variations. Microrray-based Comparative Genomic Hybridization techniques are used to map and measure DNA copy number variations with high-resolution. However, the observed copy numbers are corrupted by noise, making variations breakpoints hard to detect. In this paper, we provide a framework for the analysis of copy number datasets and it is divided into two parts. In the first part, we propose a novel image processing technique to analyze copy number variations based on extended version of Sigma filter algorithm as pre-processing technique. In the second part, we provide statistical searching model for classifying nonrandom genomic variations across multiple samples. Finally, we provide simulated and real data samples to study this effect. |
doi_str_mv | 10.1109/SSP.2007.4301213 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4301213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4301213</ieee_id><sourcerecordid>4301213</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-6bf4ebc17ab37a67c7d94b35644567574e44abb51df63ba65588655068a5ceea3</originalsourceid><addsrcrecordid>eNpVkD1PwzAYhM2XRFWyI7H4D6TY8Vc8lgpapEpUSpmr18mbxqhJIHZB_fdEogs33A2P7oYj5J6zGefMPhbFZpYxZmZSMJ5xcUESa3IuMyk5t7m-JJNMW5EKpfjVP2bs9ciEESnLmbglSQgfbJSwWmg7IaHw-w4OdDP0JYbguz3dYtl0_uuIgUJX0SJC9CH6MtC6H2hskM7Hxin4QPuaro4tdHSJXd-OIIS-9BCxoj8-NvQJG_j2Y2vuun5o4eCjx3BHbmo4BEzOOSXvL8_bxSpdvy1fF_N16rlRMdWuluhKbsAJA9qUprLSCaWlVNooI1FKcE7xqtbCgVYqz0djOgdVIoKYkoe_XY-Iu8_BtzCcducLxS_B62F5</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Signal Processing Techniques and Statistics for the Analysis of Human Genome Associated with Behavior Abnormalities</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Alqallaf, Abdullah K. ; Tewfik, Ahmed H.</creator><creatorcontrib>Alqallaf, Abdullah K. ; Tewfik, Ahmed H.</creatorcontrib><description>Almost all human genetic diseases such as cancers and developmental abnormalities are characterized by the presence of genetic variations. Microrray-based Comparative Genomic Hybridization techniques are used to map and measure DNA copy number variations with high-resolution. However, the observed copy numbers are corrupted by noise, making variations breakpoints hard to detect. In this paper, we provide a framework for the analysis of copy number datasets and it is divided into two parts. In the first part, we propose a novel image processing technique to analyze copy number variations based on extended version of Sigma filter algorithm as pre-processing technique. In the second part, we provide statistical searching model for classifying nonrandom genomic variations across multiple samples. Finally, we provide simulated and real data samples to study this effect.</description><identifier>ISSN: 2373-0803</identifier><identifier>ISBN: 9781424411979</identifier><identifier>ISBN: 1424411971</identifier><identifier>EISSN: 2693-3551</identifier><identifier>EISBN: 9781424411986</identifier><identifier>EISBN: 142441198X</identifier><identifier>DOI: 10.1109/SSP.2007.4301213</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bioinformatics ; Cancer ; Comparative Genomic Hybridization ; Copy number variations ; Diseases ; DNA ; Edge-preserving ; Genetics ; Genomics ; Humans ; multiple samples ; Signal analysis ; Signal processing ; Smoothing ; Statistical analysis</subject><ispartof>2007 IEEE/SP 14th Workshop on Statistical Signal Processing, 2007, p.36-38</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4301213$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4301213$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Alqallaf, Abdullah K.</creatorcontrib><creatorcontrib>Tewfik, Ahmed H.</creatorcontrib><title>Signal Processing Techniques and Statistics for the Analysis of Human Genome Associated with Behavior Abnormalities</title><title>2007 IEEE/SP 14th Workshop on Statistical Signal Processing</title><addtitle>SSP</addtitle><description>Almost all human genetic diseases such as cancers and developmental abnormalities are characterized by the presence of genetic variations. Microrray-based Comparative Genomic Hybridization techniques are used to map and measure DNA copy number variations with high-resolution. However, the observed copy numbers are corrupted by noise, making variations breakpoints hard to detect. In this paper, we provide a framework for the analysis of copy number datasets and it is divided into two parts. In the first part, we propose a novel image processing technique to analyze copy number variations based on extended version of Sigma filter algorithm as pre-processing technique. In the second part, we provide statistical searching model for classifying nonrandom genomic variations across multiple samples. Finally, we provide simulated and real data samples to study this effect.</description><subject>Bioinformatics</subject><subject>Cancer</subject><subject>Comparative Genomic Hybridization</subject><subject>Copy number variations</subject><subject>Diseases</subject><subject>DNA</subject><subject>Edge-preserving</subject><subject>Genetics</subject><subject>Genomics</subject><subject>Humans</subject><subject>multiple samples</subject><subject>Signal analysis</subject><subject>Signal processing</subject><subject>Smoothing</subject><subject>Statistical analysis</subject><issn>2373-0803</issn><issn>2693-3551</issn><isbn>9781424411979</isbn><isbn>1424411971</isbn><isbn>9781424411986</isbn><isbn>142441198X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkD1PwzAYhM2XRFWyI7H4D6TY8Vc8lgpapEpUSpmr18mbxqhJIHZB_fdEogs33A2P7oYj5J6zGefMPhbFZpYxZmZSMJ5xcUESa3IuMyk5t7m-JJNMW5EKpfjVP2bs9ciEESnLmbglSQgfbJSwWmg7IaHw-w4OdDP0JYbguz3dYtl0_uuIgUJX0SJC9CH6MtC6H2hskM7Hxin4QPuaro4tdHSJXd-OIIS-9BCxoj8-NvQJG_j2Y2vuun5o4eCjx3BHbmo4BEzOOSXvL8_bxSpdvy1fF_N16rlRMdWuluhKbsAJA9qUprLSCaWlVNooI1FKcE7xqtbCgVYqz0djOgdVIoKYkoe_XY-Iu8_BtzCcducLxS_B62F5</recordid><startdate>200708</startdate><enddate>200708</enddate><creator>Alqallaf, Abdullah K.</creator><creator>Tewfik, Ahmed H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200708</creationdate><title>Signal Processing Techniques and Statistics for the Analysis of Human Genome Associated with Behavior Abnormalities</title><author>Alqallaf, Abdullah K. ; Tewfik, Ahmed H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-6bf4ebc17ab37a67c7d94b35644567574e44abb51df63ba65588655068a5ceea3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Bioinformatics</topic><topic>Cancer</topic><topic>Comparative Genomic Hybridization</topic><topic>Copy number variations</topic><topic>Diseases</topic><topic>DNA</topic><topic>Edge-preserving</topic><topic>Genetics</topic><topic>Genomics</topic><topic>Humans</topic><topic>multiple samples</topic><topic>Signal analysis</topic><topic>Signal processing</topic><topic>Smoothing</topic><topic>Statistical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Alqallaf, Abdullah K.</creatorcontrib><creatorcontrib>Tewfik, Ahmed H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Alqallaf, Abdullah K.</au><au>Tewfik, Ahmed H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Signal Processing Techniques and Statistics for the Analysis of Human Genome Associated with Behavior Abnormalities</atitle><btitle>2007 IEEE/SP 14th Workshop on Statistical Signal Processing</btitle><stitle>SSP</stitle><date>2007-08</date><risdate>2007</risdate><spage>36</spage><epage>38</epage><pages>36-38</pages><issn>2373-0803</issn><eissn>2693-3551</eissn><isbn>9781424411979</isbn><isbn>1424411971</isbn><eisbn>9781424411986</eisbn><eisbn>142441198X</eisbn><abstract>Almost all human genetic diseases such as cancers and developmental abnormalities are characterized by the presence of genetic variations. Microrray-based Comparative Genomic Hybridization techniques are used to map and measure DNA copy number variations with high-resolution. However, the observed copy numbers are corrupted by noise, making variations breakpoints hard to detect. In this paper, we provide a framework for the analysis of copy number datasets and it is divided into two parts. In the first part, we propose a novel image processing technique to analyze copy number variations based on extended version of Sigma filter algorithm as pre-processing technique. In the second part, we provide statistical searching model for classifying nonrandom genomic variations across multiple samples. Finally, we provide simulated and real data samples to study this effect.</abstract><pub>IEEE</pub><doi>10.1109/SSP.2007.4301213</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2373-0803 |
ispartof | 2007 IEEE/SP 14th Workshop on Statistical Signal Processing, 2007, p.36-38 |
issn | 2373-0803 2693-3551 |
language | eng |
recordid | cdi_ieee_primary_4301213 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Bioinformatics Cancer Comparative Genomic Hybridization Copy number variations Diseases DNA Edge-preserving Genetics Genomics Humans multiple samples Signal analysis Signal processing Smoothing Statistical analysis |
title | Signal Processing Techniques and Statistics for the Analysis of Human Genome Associated with Behavior Abnormalities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A45%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Signal%20Processing%20Techniques%20and%20Statistics%20for%20the%20Analysis%20of%20Human%20Genome%20Associated%20with%20Behavior%20Abnormalities&rft.btitle=2007%20IEEE/SP%2014th%20Workshop%20on%20Statistical%20Signal%20Processing&rft.au=Alqallaf,%20Abdullah%20K.&rft.date=2007-08&rft.spage=36&rft.epage=38&rft.pages=36-38&rft.issn=2373-0803&rft.eissn=2693-3551&rft.isbn=9781424411979&rft.isbn_list=1424411971&rft_id=info:doi/10.1109/SSP.2007.4301213&rft_dat=%3Cieee_6IE%3E4301213%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424411986&rft.eisbn_list=142441198X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4301213&rfr_iscdi=true |