Movement Prediction Using Bayesian Learning for Neural Networks
A technique for reducing the wireless cost of tracking mobile users with uncertain parameters is developed in this paper. Such uncertainty arises naturally in wireless networks, since an efficient user tracking is based on a prediction of its future call and mobility parameters. The conventional app...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | |
container_start_page | 6 |
container_title | |
container_volume | |
creator | Akoush, S. Sameh, A. |
description | A technique for reducing the wireless cost of tracking mobile users with uncertain parameters is developed in this paper. Such uncertainty arises naturally in wireless networks, since an efficient user tracking is based on a prediction of its future call and mobility parameters. The conventional approach based on dynamic tracking is not reliable in the sense that inaccurate prediction of the user mobility parameters may significantly reduce the tracking efficiency. Unfortunately, such uncertainty is unavoidable for mobile users, especially for a burst mobility patterns. In this paper, we present a novel hybrid Bayesian neural network model for predicting locations on Cellular Networks (can also be extended to other wireless networks such as WI-FI and WiMAX). We investigate different parallel implementation techniques on mobile devices of the proposed approach and compare it to many standard neural network techniques such as: Back-propagation, Elman, Resilient, Levenberg-Marqudat, and One-Step Secant models. Bayesian learning for Neural Networks predicts location better than standard neural network techniques since it uses well founded probability model to represent uncertainty about the relationships being learned. The result of Bayesian training is a posterior distribution over network weights. We use Markov chain Monte Carlo methods (MCMC) to sample N values from the posterior weights distribution. |
doi_str_mv | 10.1109/ICSNC.2007.53 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4299978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4299978</ieee_id><sourcerecordid>4299978</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-a8b3b435e3b16d4f178de7a11976d7fc2d97d27cd801e76ca03618e7bfd097063</originalsourceid><addsrcrecordid>eNpNjL1OwzAURo0AiVI6MrHkBRKu7cQ3d0IQ8VMpFCTKXDnxDTK0CbIDqG9PEQxM5zvfcIQ4lZBJCXQ-r54WVaYAMCv0njgGNFQo0iXs_5cDMVHS6JRA0pGYxfgKsJsGQZmJuLgfPnnD_Zg8Bna-Hf3QJ8_R9y_Jld1y9LZParah_3m6ISQL_gh2vcP4NYS3eCIOO7uOPPvjVCxvrpfVXVo_3M6ryzr1BGNqy0Y3uS5YN9K4vJNYOkYrJaFx2LXKETqFrStBMprWgjayZGw6B4Rg9FSc_WY9M6_eg9_YsF3lioiw1N_GF0pc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Movement Prediction Using Bayesian Learning for Neural Networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Akoush, S. ; Sameh, A.</creator><creatorcontrib>Akoush, S. ; Sameh, A.</creatorcontrib><description>A technique for reducing the wireless cost of tracking mobile users with uncertain parameters is developed in this paper. Such uncertainty arises naturally in wireless networks, since an efficient user tracking is based on a prediction of its future call and mobility parameters. The conventional approach based on dynamic tracking is not reliable in the sense that inaccurate prediction of the user mobility parameters may significantly reduce the tracking efficiency. Unfortunately, such uncertainty is unavoidable for mobile users, especially for a burst mobility patterns. In this paper, we present a novel hybrid Bayesian neural network model for predicting locations on Cellular Networks (can also be extended to other wireless networks such as WI-FI and WiMAX). We investigate different parallel implementation techniques on mobile devices of the proposed approach and compare it to many standard neural network techniques such as: Back-propagation, Elman, Resilient, Levenberg-Marqudat, and One-Step Secant models. Bayesian learning for Neural Networks predicts location better than standard neural network techniques since it uses well founded probability model to represent uncertainty about the relationships being learned. The result of Bayesian training is a posterior distribution over network weights. We use Markov chain Monte Carlo methods (MCMC) to sample N values from the posterior weights distribution.</description><identifier>ISSN: 2163-9019</identifier><identifier>ISBN: 0769529380</identifier><identifier>ISBN: 9780769529387</identifier><identifier>EISBN: 0769529380</identifier><identifier>EISBN: 9780769529387</identifier><identifier>DOI: 10.1109/ICSNC.2007.53</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayesian methods ; Cellular neural networks ; Costs ; Land mobile radio cellular systems ; Neural networks ; Predictive models ; Uncertainty ; WiMAX ; Wireless networks ; Wireless sensor networks</subject><ispartof>2007 Second International Conference on Systems and Networks Communications (ICSNC 2007), 2007, p.6-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4299978$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4299978$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Akoush, S.</creatorcontrib><creatorcontrib>Sameh, A.</creatorcontrib><title>Movement Prediction Using Bayesian Learning for Neural Networks</title><title>2007 Second International Conference on Systems and Networks Communications (ICSNC 2007)</title><addtitle>ICSNC</addtitle><description>A technique for reducing the wireless cost of tracking mobile users with uncertain parameters is developed in this paper. Such uncertainty arises naturally in wireless networks, since an efficient user tracking is based on a prediction of its future call and mobility parameters. The conventional approach based on dynamic tracking is not reliable in the sense that inaccurate prediction of the user mobility parameters may significantly reduce the tracking efficiency. Unfortunately, such uncertainty is unavoidable for mobile users, especially for a burst mobility patterns. In this paper, we present a novel hybrid Bayesian neural network model for predicting locations on Cellular Networks (can also be extended to other wireless networks such as WI-FI and WiMAX). We investigate different parallel implementation techniques on mobile devices of the proposed approach and compare it to many standard neural network techniques such as: Back-propagation, Elman, Resilient, Levenberg-Marqudat, and One-Step Secant models. Bayesian learning for Neural Networks predicts location better than standard neural network techniques since it uses well founded probability model to represent uncertainty about the relationships being learned. The result of Bayesian training is a posterior distribution over network weights. We use Markov chain Monte Carlo methods (MCMC) to sample N values from the posterior weights distribution.</description><subject>Bayesian methods</subject><subject>Cellular neural networks</subject><subject>Costs</subject><subject>Land mobile radio cellular systems</subject><subject>Neural networks</subject><subject>Predictive models</subject><subject>Uncertainty</subject><subject>WiMAX</subject><subject>Wireless networks</subject><subject>Wireless sensor networks</subject><issn>2163-9019</issn><isbn>0769529380</isbn><isbn>9780769529387</isbn><isbn>0769529380</isbn><isbn>9780769529387</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNjL1OwzAURo0AiVI6MrHkBRKu7cQ3d0IQ8VMpFCTKXDnxDTK0CbIDqG9PEQxM5zvfcIQ4lZBJCXQ-r54WVaYAMCv0njgGNFQo0iXs_5cDMVHS6JRA0pGYxfgKsJsGQZmJuLgfPnnD_Zg8Bna-Hf3QJ8_R9y_Jld1y9LZParah_3m6ISQL_gh2vcP4NYS3eCIOO7uOPPvjVCxvrpfVXVo_3M6ryzr1BGNqy0Y3uS5YN9K4vJNYOkYrJaFx2LXKETqFrStBMprWgjayZGw6B4Rg9FSc_WY9M6_eg9_YsF3lioiw1N_GF0pc</recordid><startdate>200708</startdate><enddate>200708</enddate><creator>Akoush, S.</creator><creator>Sameh, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200708</creationdate><title>Movement Prediction Using Bayesian Learning for Neural Networks</title><author>Akoush, S. ; Sameh, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-a8b3b435e3b16d4f178de7a11976d7fc2d97d27cd801e76ca03618e7bfd097063</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Bayesian methods</topic><topic>Cellular neural networks</topic><topic>Costs</topic><topic>Land mobile radio cellular systems</topic><topic>Neural networks</topic><topic>Predictive models</topic><topic>Uncertainty</topic><topic>WiMAX</topic><topic>Wireless networks</topic><topic>Wireless sensor networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Akoush, S.</creatorcontrib><creatorcontrib>Sameh, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Akoush, S.</au><au>Sameh, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Movement Prediction Using Bayesian Learning for Neural Networks</atitle><btitle>2007 Second International Conference on Systems and Networks Communications (ICSNC 2007)</btitle><stitle>ICSNC</stitle><date>2007-08</date><risdate>2007</risdate><spage>6</spage><epage>6</epage><pages>6-6</pages><issn>2163-9019</issn><isbn>0769529380</isbn><isbn>9780769529387</isbn><eisbn>0769529380</eisbn><eisbn>9780769529387</eisbn><abstract>A technique for reducing the wireless cost of tracking mobile users with uncertain parameters is developed in this paper. Such uncertainty arises naturally in wireless networks, since an efficient user tracking is based on a prediction of its future call and mobility parameters. The conventional approach based on dynamic tracking is not reliable in the sense that inaccurate prediction of the user mobility parameters may significantly reduce the tracking efficiency. Unfortunately, such uncertainty is unavoidable for mobile users, especially for a burst mobility patterns. In this paper, we present a novel hybrid Bayesian neural network model for predicting locations on Cellular Networks (can also be extended to other wireless networks such as WI-FI and WiMAX). We investigate different parallel implementation techniques on mobile devices of the proposed approach and compare it to many standard neural network techniques such as: Back-propagation, Elman, Resilient, Levenberg-Marqudat, and One-Step Secant models. Bayesian learning for Neural Networks predicts location better than standard neural network techniques since it uses well founded probability model to represent uncertainty about the relationships being learned. The result of Bayesian training is a posterior distribution over network weights. We use Markov chain Monte Carlo methods (MCMC) to sample N values from the posterior weights distribution.</abstract><pub>IEEE</pub><doi>10.1109/ICSNC.2007.53</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2163-9019 |
ispartof | 2007 Second International Conference on Systems and Networks Communications (ICSNC 2007), 2007, p.6-6 |
issn | 2163-9019 |
language | eng |
recordid | cdi_ieee_primary_4299978 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Bayesian methods Cellular neural networks Costs Land mobile radio cellular systems Neural networks Predictive models Uncertainty WiMAX Wireless networks Wireless sensor networks |
title | Movement Prediction Using Bayesian Learning for Neural Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A22%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Movement%20Prediction%20Using%20Bayesian%20Learning%20for%20Neural%20Networks&rft.btitle=2007%20Second%20International%20Conference%20on%20Systems%20and%20Networks%20Communications%20(ICSNC%202007)&rft.au=Akoush,%20S.&rft.date=2007-08&rft.spage=6&rft.epage=6&rft.pages=6-6&rft.issn=2163-9019&rft.isbn=0769529380&rft.isbn_list=9780769529387&rft_id=info:doi/10.1109/ICSNC.2007.53&rft_dat=%3Cieee_6IE%3E4299978%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0769529380&rft.eisbn_list=9780769529387&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4299978&rfr_iscdi=true |