Movement Prediction Using Bayesian Learning for Neural Networks

A technique for reducing the wireless cost of tracking mobile users with uncertain parameters is developed in this paper. Such uncertainty arises naturally in wireless networks, since an efficient user tracking is based on a prediction of its future call and mobility parameters. The conventional app...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Akoush, S., Sameh, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 6
container_title
container_volume
creator Akoush, S.
Sameh, A.
description A technique for reducing the wireless cost of tracking mobile users with uncertain parameters is developed in this paper. Such uncertainty arises naturally in wireless networks, since an efficient user tracking is based on a prediction of its future call and mobility parameters. The conventional approach based on dynamic tracking is not reliable in the sense that inaccurate prediction of the user mobility parameters may significantly reduce the tracking efficiency. Unfortunately, such uncertainty is unavoidable for mobile users, especially for a burst mobility patterns. In this paper, we present a novel hybrid Bayesian neural network model for predicting locations on Cellular Networks (can also be extended to other wireless networks such as WI-FI and WiMAX). We investigate different parallel implementation techniques on mobile devices of the proposed approach and compare it to many standard neural network techniques such as: Back-propagation, Elman, Resilient, Levenberg-Marqudat, and One-Step Secant models. Bayesian learning for Neural Networks predicts location better than standard neural network techniques since it uses well founded probability model to represent uncertainty about the relationships being learned. The result of Bayesian training is a posterior distribution over network weights. We use Markov chain Monte Carlo methods (MCMC) to sample N values from the posterior weights distribution.
doi_str_mv 10.1109/ICSNC.2007.53
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4299978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4299978</ieee_id><sourcerecordid>4299978</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-a8b3b435e3b16d4f178de7a11976d7fc2d97d27cd801e76ca03618e7bfd097063</originalsourceid><addsrcrecordid>eNpNjL1OwzAURo0AiVI6MrHkBRKu7cQ3d0IQ8VMpFCTKXDnxDTK0CbIDqG9PEQxM5zvfcIQ4lZBJCXQ-r54WVaYAMCv0njgGNFQo0iXs_5cDMVHS6JRA0pGYxfgKsJsGQZmJuLgfPnnD_Zg8Bna-Hf3QJ8_R9y_Jld1y9LZParah_3m6ISQL_gh2vcP4NYS3eCIOO7uOPPvjVCxvrpfVXVo_3M6ryzr1BGNqy0Y3uS5YN9K4vJNYOkYrJaFx2LXKETqFrStBMprWgjayZGw6B4Rg9FSc_WY9M6_eg9_YsF3lioiw1N_GF0pc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Movement Prediction Using Bayesian Learning for Neural Networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Akoush, S. ; Sameh, A.</creator><creatorcontrib>Akoush, S. ; Sameh, A.</creatorcontrib><description>A technique for reducing the wireless cost of tracking mobile users with uncertain parameters is developed in this paper. Such uncertainty arises naturally in wireless networks, since an efficient user tracking is based on a prediction of its future call and mobility parameters. The conventional approach based on dynamic tracking is not reliable in the sense that inaccurate prediction of the user mobility parameters may significantly reduce the tracking efficiency. Unfortunately, such uncertainty is unavoidable for mobile users, especially for a burst mobility patterns. In this paper, we present a novel hybrid Bayesian neural network model for predicting locations on Cellular Networks (can also be extended to other wireless networks such as WI-FI and WiMAX). We investigate different parallel implementation techniques on mobile devices of the proposed approach and compare it to many standard neural network techniques such as: Back-propagation, Elman, Resilient, Levenberg-Marqudat, and One-Step Secant models. Bayesian learning for Neural Networks predicts location better than standard neural network techniques since it uses well founded probability model to represent uncertainty about the relationships being learned. The result of Bayesian training is a posterior distribution over network weights. We use Markov chain Monte Carlo methods (MCMC) to sample N values from the posterior weights distribution.</description><identifier>ISSN: 2163-9019</identifier><identifier>ISBN: 0769529380</identifier><identifier>ISBN: 9780769529387</identifier><identifier>EISBN: 0769529380</identifier><identifier>EISBN: 9780769529387</identifier><identifier>DOI: 10.1109/ICSNC.2007.53</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayesian methods ; Cellular neural networks ; Costs ; Land mobile radio cellular systems ; Neural networks ; Predictive models ; Uncertainty ; WiMAX ; Wireless networks ; Wireless sensor networks</subject><ispartof>2007 Second International Conference on Systems and Networks Communications (ICSNC 2007), 2007, p.6-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4299978$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4299978$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Akoush, S.</creatorcontrib><creatorcontrib>Sameh, A.</creatorcontrib><title>Movement Prediction Using Bayesian Learning for Neural Networks</title><title>2007 Second International Conference on Systems and Networks Communications (ICSNC 2007)</title><addtitle>ICSNC</addtitle><description>A technique for reducing the wireless cost of tracking mobile users with uncertain parameters is developed in this paper. Such uncertainty arises naturally in wireless networks, since an efficient user tracking is based on a prediction of its future call and mobility parameters. The conventional approach based on dynamic tracking is not reliable in the sense that inaccurate prediction of the user mobility parameters may significantly reduce the tracking efficiency. Unfortunately, such uncertainty is unavoidable for mobile users, especially for a burst mobility patterns. In this paper, we present a novel hybrid Bayesian neural network model for predicting locations on Cellular Networks (can also be extended to other wireless networks such as WI-FI and WiMAX). We investigate different parallel implementation techniques on mobile devices of the proposed approach and compare it to many standard neural network techniques such as: Back-propagation, Elman, Resilient, Levenberg-Marqudat, and One-Step Secant models. Bayesian learning for Neural Networks predicts location better than standard neural network techniques since it uses well founded probability model to represent uncertainty about the relationships being learned. The result of Bayesian training is a posterior distribution over network weights. We use Markov chain Monte Carlo methods (MCMC) to sample N values from the posterior weights distribution.</description><subject>Bayesian methods</subject><subject>Cellular neural networks</subject><subject>Costs</subject><subject>Land mobile radio cellular systems</subject><subject>Neural networks</subject><subject>Predictive models</subject><subject>Uncertainty</subject><subject>WiMAX</subject><subject>Wireless networks</subject><subject>Wireless sensor networks</subject><issn>2163-9019</issn><isbn>0769529380</isbn><isbn>9780769529387</isbn><isbn>0769529380</isbn><isbn>9780769529387</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNjL1OwzAURo0AiVI6MrHkBRKu7cQ3d0IQ8VMpFCTKXDnxDTK0CbIDqG9PEQxM5zvfcIQ4lZBJCXQ-r54WVaYAMCv0njgGNFQo0iXs_5cDMVHS6JRA0pGYxfgKsJsGQZmJuLgfPnnD_Zg8Bna-Hf3QJ8_R9y_Jld1y9LZParah_3m6ISQL_gh2vcP4NYS3eCIOO7uOPPvjVCxvrpfVXVo_3M6ryzr1BGNqy0Y3uS5YN9K4vJNYOkYrJaFx2LXKETqFrStBMprWgjayZGw6B4Rg9FSc_WY9M6_eg9_YsF3lioiw1N_GF0pc</recordid><startdate>200708</startdate><enddate>200708</enddate><creator>Akoush, S.</creator><creator>Sameh, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200708</creationdate><title>Movement Prediction Using Bayesian Learning for Neural Networks</title><author>Akoush, S. ; Sameh, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-a8b3b435e3b16d4f178de7a11976d7fc2d97d27cd801e76ca03618e7bfd097063</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Bayesian methods</topic><topic>Cellular neural networks</topic><topic>Costs</topic><topic>Land mobile radio cellular systems</topic><topic>Neural networks</topic><topic>Predictive models</topic><topic>Uncertainty</topic><topic>WiMAX</topic><topic>Wireless networks</topic><topic>Wireless sensor networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Akoush, S.</creatorcontrib><creatorcontrib>Sameh, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Akoush, S.</au><au>Sameh, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Movement Prediction Using Bayesian Learning for Neural Networks</atitle><btitle>2007 Second International Conference on Systems and Networks Communications (ICSNC 2007)</btitle><stitle>ICSNC</stitle><date>2007-08</date><risdate>2007</risdate><spage>6</spage><epage>6</epage><pages>6-6</pages><issn>2163-9019</issn><isbn>0769529380</isbn><isbn>9780769529387</isbn><eisbn>0769529380</eisbn><eisbn>9780769529387</eisbn><abstract>A technique for reducing the wireless cost of tracking mobile users with uncertain parameters is developed in this paper. Such uncertainty arises naturally in wireless networks, since an efficient user tracking is based on a prediction of its future call and mobility parameters. The conventional approach based on dynamic tracking is not reliable in the sense that inaccurate prediction of the user mobility parameters may significantly reduce the tracking efficiency. Unfortunately, such uncertainty is unavoidable for mobile users, especially for a burst mobility patterns. In this paper, we present a novel hybrid Bayesian neural network model for predicting locations on Cellular Networks (can also be extended to other wireless networks such as WI-FI and WiMAX). We investigate different parallel implementation techniques on mobile devices of the proposed approach and compare it to many standard neural network techniques such as: Back-propagation, Elman, Resilient, Levenberg-Marqudat, and One-Step Secant models. Bayesian learning for Neural Networks predicts location better than standard neural network techniques since it uses well founded probability model to represent uncertainty about the relationships being learned. The result of Bayesian training is a posterior distribution over network weights. We use Markov chain Monte Carlo methods (MCMC) to sample N values from the posterior weights distribution.</abstract><pub>IEEE</pub><doi>10.1109/ICSNC.2007.53</doi><tpages>1</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2163-9019
ispartof 2007 Second International Conference on Systems and Networks Communications (ICSNC 2007), 2007, p.6-6
issn 2163-9019
language eng
recordid cdi_ieee_primary_4299978
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bayesian methods
Cellular neural networks
Costs
Land mobile radio cellular systems
Neural networks
Predictive models
Uncertainty
WiMAX
Wireless networks
Wireless sensor networks
title Movement Prediction Using Bayesian Learning for Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A22%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Movement%20Prediction%20Using%20Bayesian%20Learning%20for%20Neural%20Networks&rft.btitle=2007%20Second%20International%20Conference%20on%20Systems%20and%20Networks%20Communications%20(ICSNC%202007)&rft.au=Akoush,%20S.&rft.date=2007-08&rft.spage=6&rft.epage=6&rft.pages=6-6&rft.issn=2163-9019&rft.isbn=0769529380&rft.isbn_list=9780769529387&rft_id=info:doi/10.1109/ICSNC.2007.53&rft_dat=%3Cieee_6IE%3E4299978%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0769529380&rft.eisbn_list=9780769529387&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4299978&rfr_iscdi=true