An FPGA Implementation for a Kalman Filter with Application to Mobile Robotics
The problem of simultaneous localization and mapping has been studied by the mobile robotics scientific community over the last two decades. Most solutions for this problem are based on probabilistic theory in order to represent the uncertainty in robot perception and action. One of the most efficie...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 155 |
---|---|
container_issue | |
container_start_page | 148 |
container_title | |
container_volume | |
creator | Bonato, V. Peron, R. Wolf, D.F. de Holanda, J.A.M. Marques, E. Cardoso, J.M.P. |
description | The problem of simultaneous localization and mapping has been studied by the mobile robotics scientific community over the last two decades. Most solutions for this problem are based on probabilistic theory in order to represent the uncertainty in robot perception and action. One of the most efficient probabilistic methods is the extended Kalman filter (EKF). However, the EKF demands a considerable amount of computing power and is usually processed by high-end laptops coupled to the robots. In this work, we present an implementation of the EKF targeting an embedded system based on an FPGA device. In order to improve performance, our approach combines a softcore processor with customized hardware. We present experiments with four different FPGA implementations, being the first purely based on software, the second using custom instruction logic directly connected to the processor's ALU, the third using hardware accelerators connected to the processor's data bus, and finally the fourth combining those two hardware/software solutions. For the experiments conducted, the results obtained with a small addition of hardware resources permitted to increase from 2times to 4times the performance of the global system. |
doi_str_mv | 10.1109/SIES.2007.4297329 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4297329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4297329</ieee_id><sourcerecordid>4297329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-ada89c72cc3a30ac43408a77e746d28488bb44aece361b1284c387c95f8e43e83</originalsourceid><addsrcrecordid>eNo9UNtqwzAU826wrssHjL34B5LZPk5sP4bSdmHdhXV7Lo57wjxyIzGM_f0CDdOLQBJCiJA7zhLOmXnYF-t9IhhTiRRGgTBnJDJKcymkZFqy9JwsBE9ZDJyrC3IzG2Dg8t9g5ppE4_jNJoDJuDIL8pK3dPO2zWnR9DU22AYbfNfSqhuopU-2buwU8HXAgf748EXzvq-9O4VCR5-70tdI37uyC96Nt-SqsvWI0cxL8rlZf6we493rtljlu9gJASG2R6uNU8I5sMCskzBttUqhktlRaKl1WUpp0SFkvOST4kArZ9JKowTUsCT3p16PiId-8I0dfg_zNfAHPxlSDA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An FPGA Implementation for a Kalman Filter with Application to Mobile Robotics</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bonato, V. ; Peron, R. ; Wolf, D.F. ; de Holanda, J.A.M. ; Marques, E. ; Cardoso, J.M.P.</creator><creatorcontrib>Bonato, V. ; Peron, R. ; Wolf, D.F. ; de Holanda, J.A.M. ; Marques, E. ; Cardoso, J.M.P.</creatorcontrib><description>The problem of simultaneous localization and mapping has been studied by the mobile robotics scientific community over the last two decades. Most solutions for this problem are based on probabilistic theory in order to represent the uncertainty in robot perception and action. One of the most efficient probabilistic methods is the extended Kalman filter (EKF). However, the EKF demands a considerable amount of computing power and is usually processed by high-end laptops coupled to the robots. In this work, we present an implementation of the EKF targeting an embedded system based on an FPGA device. In order to improve performance, our approach combines a softcore processor with customized hardware. We present experiments with four different FPGA implementations, being the first purely based on software, the second using custom instruction logic directly connected to the processor's ALU, the third using hardware accelerators connected to the processor's data bus, and finally the fourth combining those two hardware/software solutions. For the experiments conducted, the results obtained with a small addition of hardware resources permitted to increase from 2times to 4times the performance of the global system.</description><identifier>ISSN: 2150-3109</identifier><identifier>ISBN: 1424408393</identifier><identifier>ISBN: 9781424408399</identifier><identifier>EISSN: 2150-3117</identifier><identifier>EISBN: 9781424408405</identifier><identifier>EISBN: 1424408407</identifier><identifier>DOI: 10.1109/SIES.2007.4297329</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Covariance matrix ; Equations ; Field programmable gate arrays ; Filters ; Hardware ; Mobile computing ; Mobile robots ; Robot sensing systems ; Simultaneous localization and mapping</subject><ispartof>2007 International Symposium on Industrial Embedded Systems, 2007, p.148-155</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-ada89c72cc3a30ac43408a77e746d28488bb44aece361b1284c387c95f8e43e83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4297329$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4297329$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bonato, V.</creatorcontrib><creatorcontrib>Peron, R.</creatorcontrib><creatorcontrib>Wolf, D.F.</creatorcontrib><creatorcontrib>de Holanda, J.A.M.</creatorcontrib><creatorcontrib>Marques, E.</creatorcontrib><creatorcontrib>Cardoso, J.M.P.</creatorcontrib><title>An FPGA Implementation for a Kalman Filter with Application to Mobile Robotics</title><title>2007 International Symposium on Industrial Embedded Systems</title><addtitle>SIES</addtitle><description>The problem of simultaneous localization and mapping has been studied by the mobile robotics scientific community over the last two decades. Most solutions for this problem are based on probabilistic theory in order to represent the uncertainty in robot perception and action. One of the most efficient probabilistic methods is the extended Kalman filter (EKF). However, the EKF demands a considerable amount of computing power and is usually processed by high-end laptops coupled to the robots. In this work, we present an implementation of the EKF targeting an embedded system based on an FPGA device. In order to improve performance, our approach combines a softcore processor with customized hardware. We present experiments with four different FPGA implementations, being the first purely based on software, the second using custom instruction logic directly connected to the processor's ALU, the third using hardware accelerators connected to the processor's data bus, and finally the fourth combining those two hardware/software solutions. For the experiments conducted, the results obtained with a small addition of hardware resources permitted to increase from 2times to 4times the performance of the global system.</description><subject>Application software</subject><subject>Covariance matrix</subject><subject>Equations</subject><subject>Field programmable gate arrays</subject><subject>Filters</subject><subject>Hardware</subject><subject>Mobile computing</subject><subject>Mobile robots</subject><subject>Robot sensing systems</subject><subject>Simultaneous localization and mapping</subject><issn>2150-3109</issn><issn>2150-3117</issn><isbn>1424408393</isbn><isbn>9781424408399</isbn><isbn>9781424408405</isbn><isbn>1424408407</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9UNtqwzAU826wrssHjL34B5LZPk5sP4bSdmHdhXV7Lo57wjxyIzGM_f0CDdOLQBJCiJA7zhLOmXnYF-t9IhhTiRRGgTBnJDJKcymkZFqy9JwsBE9ZDJyrC3IzG2Dg8t9g5ppE4_jNJoDJuDIL8pK3dPO2zWnR9DU22AYbfNfSqhuopU-2buwU8HXAgf748EXzvq-9O4VCR5-70tdI37uyC96Nt-SqsvWI0cxL8rlZf6we493rtljlu9gJASG2R6uNU8I5sMCskzBttUqhktlRaKl1WUpp0SFkvOST4kArZ9JKowTUsCT3p16PiId-8I0dfg_zNfAHPxlSDA</recordid><startdate>200707</startdate><enddate>200707</enddate><creator>Bonato, V.</creator><creator>Peron, R.</creator><creator>Wolf, D.F.</creator><creator>de Holanda, J.A.M.</creator><creator>Marques, E.</creator><creator>Cardoso, J.M.P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200707</creationdate><title>An FPGA Implementation for a Kalman Filter with Application to Mobile Robotics</title><author>Bonato, V. ; Peron, R. ; Wolf, D.F. ; de Holanda, J.A.M. ; Marques, E. ; Cardoso, J.M.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-ada89c72cc3a30ac43408a77e746d28488bb44aece361b1284c387c95f8e43e83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Application software</topic><topic>Covariance matrix</topic><topic>Equations</topic><topic>Field programmable gate arrays</topic><topic>Filters</topic><topic>Hardware</topic><topic>Mobile computing</topic><topic>Mobile robots</topic><topic>Robot sensing systems</topic><topic>Simultaneous localization and mapping</topic><toplevel>online_resources</toplevel><creatorcontrib>Bonato, V.</creatorcontrib><creatorcontrib>Peron, R.</creatorcontrib><creatorcontrib>Wolf, D.F.</creatorcontrib><creatorcontrib>de Holanda, J.A.M.</creatorcontrib><creatorcontrib>Marques, E.</creatorcontrib><creatorcontrib>Cardoso, J.M.P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bonato, V.</au><au>Peron, R.</au><au>Wolf, D.F.</au><au>de Holanda, J.A.M.</au><au>Marques, E.</au><au>Cardoso, J.M.P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An FPGA Implementation for a Kalman Filter with Application to Mobile Robotics</atitle><btitle>2007 International Symposium on Industrial Embedded Systems</btitle><stitle>SIES</stitle><date>2007-07</date><risdate>2007</risdate><spage>148</spage><epage>155</epage><pages>148-155</pages><issn>2150-3109</issn><eissn>2150-3117</eissn><isbn>1424408393</isbn><isbn>9781424408399</isbn><eisbn>9781424408405</eisbn><eisbn>1424408407</eisbn><abstract>The problem of simultaneous localization and mapping has been studied by the mobile robotics scientific community over the last two decades. Most solutions for this problem are based on probabilistic theory in order to represent the uncertainty in robot perception and action. One of the most efficient probabilistic methods is the extended Kalman filter (EKF). However, the EKF demands a considerable amount of computing power and is usually processed by high-end laptops coupled to the robots. In this work, we present an implementation of the EKF targeting an embedded system based on an FPGA device. In order to improve performance, our approach combines a softcore processor with customized hardware. We present experiments with four different FPGA implementations, being the first purely based on software, the second using custom instruction logic directly connected to the processor's ALU, the third using hardware accelerators connected to the processor's data bus, and finally the fourth combining those two hardware/software solutions. For the experiments conducted, the results obtained with a small addition of hardware resources permitted to increase from 2times to 4times the performance of the global system.</abstract><pub>IEEE</pub><doi>10.1109/SIES.2007.4297329</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2150-3109 |
ispartof | 2007 International Symposium on Industrial Embedded Systems, 2007, p.148-155 |
issn | 2150-3109 2150-3117 |
language | eng |
recordid | cdi_ieee_primary_4297329 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Application software Covariance matrix Equations Field programmable gate arrays Filters Hardware Mobile computing Mobile robots Robot sensing systems Simultaneous localization and mapping |
title | An FPGA Implementation for a Kalman Filter with Application to Mobile Robotics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A23%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20FPGA%20Implementation%20for%20a%20Kalman%20Filter%20with%20Application%20to%20Mobile%20Robotics&rft.btitle=2007%20International%20Symposium%20on%20Industrial%20Embedded%20Systems&rft.au=Bonato,%20V.&rft.date=2007-07&rft.spage=148&rft.epage=155&rft.pages=148-155&rft.issn=2150-3109&rft.eissn=2150-3117&rft.isbn=1424408393&rft.isbn_list=9781424408399&rft_id=info:doi/10.1109/SIES.2007.4297329&rft_dat=%3Cieee_6IE%3E4297329%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424408405&rft.eisbn_list=1424408407&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4297329&rfr_iscdi=true |