An FPGA Implementation for a Kalman Filter with Application to Mobile Robotics

The problem of simultaneous localization and mapping has been studied by the mobile robotics scientific community over the last two decades. Most solutions for this problem are based on probabilistic theory in order to represent the uncertainty in robot perception and action. One of the most efficie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bonato, V., Peron, R., Wolf, D.F., de Holanda, J.A.M., Marques, E., Cardoso, J.M.P.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 155
container_issue
container_start_page 148
container_title
container_volume
creator Bonato, V.
Peron, R.
Wolf, D.F.
de Holanda, J.A.M.
Marques, E.
Cardoso, J.M.P.
description The problem of simultaneous localization and mapping has been studied by the mobile robotics scientific community over the last two decades. Most solutions for this problem are based on probabilistic theory in order to represent the uncertainty in robot perception and action. One of the most efficient probabilistic methods is the extended Kalman filter (EKF). However, the EKF demands a considerable amount of computing power and is usually processed by high-end laptops coupled to the robots. In this work, we present an implementation of the EKF targeting an embedded system based on an FPGA device. In order to improve performance, our approach combines a softcore processor with customized hardware. We present experiments with four different FPGA implementations, being the first purely based on software, the second using custom instruction logic directly connected to the processor's ALU, the third using hardware accelerators connected to the processor's data bus, and finally the fourth combining those two hardware/software solutions. For the experiments conducted, the results obtained with a small addition of hardware resources permitted to increase from 2times to 4times the performance of the global system.
doi_str_mv 10.1109/SIES.2007.4297329
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4297329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4297329</ieee_id><sourcerecordid>4297329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-ada89c72cc3a30ac43408a77e746d28488bb44aece361b1284c387c95f8e43e83</originalsourceid><addsrcrecordid>eNo9UNtqwzAU826wrssHjL34B5LZPk5sP4bSdmHdhXV7Lo57wjxyIzGM_f0CDdOLQBJCiJA7zhLOmXnYF-t9IhhTiRRGgTBnJDJKcymkZFqy9JwsBE9ZDJyrC3IzG2Dg8t9g5ppE4_jNJoDJuDIL8pK3dPO2zWnR9DU22AYbfNfSqhuopU-2buwU8HXAgf748EXzvq-9O4VCR5-70tdI37uyC96Nt-SqsvWI0cxL8rlZf6we493rtljlu9gJASG2R6uNU8I5sMCskzBttUqhktlRaKl1WUpp0SFkvOST4kArZ9JKowTUsCT3p16PiId-8I0dfg_zNfAHPxlSDA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An FPGA Implementation for a Kalman Filter with Application to Mobile Robotics</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bonato, V. ; Peron, R. ; Wolf, D.F. ; de Holanda, J.A.M. ; Marques, E. ; Cardoso, J.M.P.</creator><creatorcontrib>Bonato, V. ; Peron, R. ; Wolf, D.F. ; de Holanda, J.A.M. ; Marques, E. ; Cardoso, J.M.P.</creatorcontrib><description>The problem of simultaneous localization and mapping has been studied by the mobile robotics scientific community over the last two decades. Most solutions for this problem are based on probabilistic theory in order to represent the uncertainty in robot perception and action. One of the most efficient probabilistic methods is the extended Kalman filter (EKF). However, the EKF demands a considerable amount of computing power and is usually processed by high-end laptops coupled to the robots. In this work, we present an implementation of the EKF targeting an embedded system based on an FPGA device. In order to improve performance, our approach combines a softcore processor with customized hardware. We present experiments with four different FPGA implementations, being the first purely based on software, the second using custom instruction logic directly connected to the processor's ALU, the third using hardware accelerators connected to the processor's data bus, and finally the fourth combining those two hardware/software solutions. For the experiments conducted, the results obtained with a small addition of hardware resources permitted to increase from 2times to 4times the performance of the global system.</description><identifier>ISSN: 2150-3109</identifier><identifier>ISBN: 1424408393</identifier><identifier>ISBN: 9781424408399</identifier><identifier>EISSN: 2150-3117</identifier><identifier>EISBN: 9781424408405</identifier><identifier>EISBN: 1424408407</identifier><identifier>DOI: 10.1109/SIES.2007.4297329</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Covariance matrix ; Equations ; Field programmable gate arrays ; Filters ; Hardware ; Mobile computing ; Mobile robots ; Robot sensing systems ; Simultaneous localization and mapping</subject><ispartof>2007 International Symposium on Industrial Embedded Systems, 2007, p.148-155</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-ada89c72cc3a30ac43408a77e746d28488bb44aece361b1284c387c95f8e43e83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4297329$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4297329$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bonato, V.</creatorcontrib><creatorcontrib>Peron, R.</creatorcontrib><creatorcontrib>Wolf, D.F.</creatorcontrib><creatorcontrib>de Holanda, J.A.M.</creatorcontrib><creatorcontrib>Marques, E.</creatorcontrib><creatorcontrib>Cardoso, J.M.P.</creatorcontrib><title>An FPGA Implementation for a Kalman Filter with Application to Mobile Robotics</title><title>2007 International Symposium on Industrial Embedded Systems</title><addtitle>SIES</addtitle><description>The problem of simultaneous localization and mapping has been studied by the mobile robotics scientific community over the last two decades. Most solutions for this problem are based on probabilistic theory in order to represent the uncertainty in robot perception and action. One of the most efficient probabilistic methods is the extended Kalman filter (EKF). However, the EKF demands a considerable amount of computing power and is usually processed by high-end laptops coupled to the robots. In this work, we present an implementation of the EKF targeting an embedded system based on an FPGA device. In order to improve performance, our approach combines a softcore processor with customized hardware. We present experiments with four different FPGA implementations, being the first purely based on software, the second using custom instruction logic directly connected to the processor's ALU, the third using hardware accelerators connected to the processor's data bus, and finally the fourth combining those two hardware/software solutions. For the experiments conducted, the results obtained with a small addition of hardware resources permitted to increase from 2times to 4times the performance of the global system.</description><subject>Application software</subject><subject>Covariance matrix</subject><subject>Equations</subject><subject>Field programmable gate arrays</subject><subject>Filters</subject><subject>Hardware</subject><subject>Mobile computing</subject><subject>Mobile robots</subject><subject>Robot sensing systems</subject><subject>Simultaneous localization and mapping</subject><issn>2150-3109</issn><issn>2150-3117</issn><isbn>1424408393</isbn><isbn>9781424408399</isbn><isbn>9781424408405</isbn><isbn>1424408407</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9UNtqwzAU826wrssHjL34B5LZPk5sP4bSdmHdhXV7Lo57wjxyIzGM_f0CDdOLQBJCiJA7zhLOmXnYF-t9IhhTiRRGgTBnJDJKcymkZFqy9JwsBE9ZDJyrC3IzG2Dg8t9g5ppE4_jNJoDJuDIL8pK3dPO2zWnR9DU22AYbfNfSqhuopU-2buwU8HXAgf748EXzvq-9O4VCR5-70tdI37uyC96Nt-SqsvWI0cxL8rlZf6we493rtljlu9gJASG2R6uNU8I5sMCskzBttUqhktlRaKl1WUpp0SFkvOST4kArZ9JKowTUsCT3p16PiId-8I0dfg_zNfAHPxlSDA</recordid><startdate>200707</startdate><enddate>200707</enddate><creator>Bonato, V.</creator><creator>Peron, R.</creator><creator>Wolf, D.F.</creator><creator>de Holanda, J.A.M.</creator><creator>Marques, E.</creator><creator>Cardoso, J.M.P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200707</creationdate><title>An FPGA Implementation for a Kalman Filter with Application to Mobile Robotics</title><author>Bonato, V. ; Peron, R. ; Wolf, D.F. ; de Holanda, J.A.M. ; Marques, E. ; Cardoso, J.M.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-ada89c72cc3a30ac43408a77e746d28488bb44aece361b1284c387c95f8e43e83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Application software</topic><topic>Covariance matrix</topic><topic>Equations</topic><topic>Field programmable gate arrays</topic><topic>Filters</topic><topic>Hardware</topic><topic>Mobile computing</topic><topic>Mobile robots</topic><topic>Robot sensing systems</topic><topic>Simultaneous localization and mapping</topic><toplevel>online_resources</toplevel><creatorcontrib>Bonato, V.</creatorcontrib><creatorcontrib>Peron, R.</creatorcontrib><creatorcontrib>Wolf, D.F.</creatorcontrib><creatorcontrib>de Holanda, J.A.M.</creatorcontrib><creatorcontrib>Marques, E.</creatorcontrib><creatorcontrib>Cardoso, J.M.P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bonato, V.</au><au>Peron, R.</au><au>Wolf, D.F.</au><au>de Holanda, J.A.M.</au><au>Marques, E.</au><au>Cardoso, J.M.P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An FPGA Implementation for a Kalman Filter with Application to Mobile Robotics</atitle><btitle>2007 International Symposium on Industrial Embedded Systems</btitle><stitle>SIES</stitle><date>2007-07</date><risdate>2007</risdate><spage>148</spage><epage>155</epage><pages>148-155</pages><issn>2150-3109</issn><eissn>2150-3117</eissn><isbn>1424408393</isbn><isbn>9781424408399</isbn><eisbn>9781424408405</eisbn><eisbn>1424408407</eisbn><abstract>The problem of simultaneous localization and mapping has been studied by the mobile robotics scientific community over the last two decades. Most solutions for this problem are based on probabilistic theory in order to represent the uncertainty in robot perception and action. One of the most efficient probabilistic methods is the extended Kalman filter (EKF). However, the EKF demands a considerable amount of computing power and is usually processed by high-end laptops coupled to the robots. In this work, we present an implementation of the EKF targeting an embedded system based on an FPGA device. In order to improve performance, our approach combines a softcore processor with customized hardware. We present experiments with four different FPGA implementations, being the first purely based on software, the second using custom instruction logic directly connected to the processor's ALU, the third using hardware accelerators connected to the processor's data bus, and finally the fourth combining those two hardware/software solutions. For the experiments conducted, the results obtained with a small addition of hardware resources permitted to increase from 2times to 4times the performance of the global system.</abstract><pub>IEEE</pub><doi>10.1109/SIES.2007.4297329</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2150-3109
ispartof 2007 International Symposium on Industrial Embedded Systems, 2007, p.148-155
issn 2150-3109
2150-3117
language eng
recordid cdi_ieee_primary_4297329
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Application software
Covariance matrix
Equations
Field programmable gate arrays
Filters
Hardware
Mobile computing
Mobile robots
Robot sensing systems
Simultaneous localization and mapping
title An FPGA Implementation for a Kalman Filter with Application to Mobile Robotics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A23%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20FPGA%20Implementation%20for%20a%20Kalman%20Filter%20with%20Application%20to%20Mobile%20Robotics&rft.btitle=2007%20International%20Symposium%20on%20Industrial%20Embedded%20Systems&rft.au=Bonato,%20V.&rft.date=2007-07&rft.spage=148&rft.epage=155&rft.pages=148-155&rft.issn=2150-3109&rft.eissn=2150-3117&rft.isbn=1424408393&rft.isbn_list=9781424408399&rft_id=info:doi/10.1109/SIES.2007.4297329&rft_dat=%3Cieee_6IE%3E4297329%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424408405&rft.eisbn_list=1424408407&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4297329&rfr_iscdi=true