Hand Gesture Recognition Using Fast Multi-scale Analysis

Hand gesture has been used as a natural and efficient way in human computer interaction. Due to independence of auxiliary input devices, vision-based hand interfaces is more favorable for users. However, the process of hand gesture recognition is very time consuming, which often brings much frustrat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yikai Fang, Jian Cheng, Kongqiao Wang, Hanqing Lu
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 698
container_issue
container_start_page 694
container_title
container_volume
creator Yikai Fang
Jian Cheng
Kongqiao Wang
Hanqing Lu
description Hand gesture has been used as a natural and efficient way in human computer interaction. Due to independence of auxiliary input devices, vision-based hand interfaces is more favorable for users. However, the process of hand gesture recognition is very time consuming, which often brings much frustration to users. In this paper, we propose a fast feature detection and description approach which can significantly speed up hand gesture recognition. Firstly, integral image is used to approximate Gaussian derivatives to calculate image convolution in feature detection. Then multi-scale geometric descriptors at feature points are obtained to represent hand gestures. Finally gesture is recognized with its geometric configuration. Experiments show that the proposed method needs much less time consumption while obtains comparative performance with its counterpart in literatures.
doi_str_mv 10.1109/ICIG.2007.52
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4297171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4297171</ieee_id><sourcerecordid>4297171</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-333941ef1bb082b3dee16343bb8826f9c5d12dff4c5ea6383816d13c037714ff3</originalsourceid><addsrcrecordid>eNotjUFLwzAYQAMiKLM3b17yB1rz5Uua5DiK6wobgrjzSNsvI1I7abLD_r0DfZd3e4-xZxAVgHCvXdO1lRTCVFrescIZK0zttHTS6QdWpPQlbqBTRtpHZrd-HnlLKV8W4h80nE9zzPE880OK84lvfMp8f5lyLNPgJ-Lr2U_XFNMTuw9-SlT8e8UOm7fPZlvu3tuuWe_KCEbnEvF2AgrQ98LKHkciqFFh31sr6-AGPYIcQ1CDJl-jRQv1CDgINAZUCLhiL3_dSETHnyV---V6VNIZMIC_k61Dqg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hand Gesture Recognition Using Fast Multi-scale Analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yikai Fang ; Jian Cheng ; Kongqiao Wang ; Hanqing Lu</creator><creatorcontrib>Yikai Fang ; Jian Cheng ; Kongqiao Wang ; Hanqing Lu</creatorcontrib><description>Hand gesture has been used as a natural and efficient way in human computer interaction. Due to independence of auxiliary input devices, vision-based hand interfaces is more favorable for users. However, the process of hand gesture recognition is very time consuming, which often brings much frustration to users. In this paper, we propose a fast feature detection and description approach which can significantly speed up hand gesture recognition. Firstly, integral image is used to approximate Gaussian derivatives to calculate image convolution in feature detection. Then multi-scale geometric descriptors at feature points are obtained to represent hand gestures. Finally gesture is recognized with its geometric configuration. Experiments show that the proposed method needs much less time consumption while obtains comparative performance with its counterpart in literatures.</description><identifier>ISBN: 9780769529295</identifier><identifier>ISBN: 0769529291</identifier><identifier>DOI: 10.1109/ICIG.2007.52</identifier><language>eng</language><publisher>IEEE</publisher><subject>Boosting ; Computational efficiency ; Computer vision ; Convolution ; Detectors ; Graphics ; Human computer interaction ; Pattern recognition ; Pervasive computing ; Pixel</subject><ispartof>Fourth International Conference on Image and Graphics (ICIG 2007), 2007, p.694-698</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4297171$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4297171$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yikai Fang</creatorcontrib><creatorcontrib>Jian Cheng</creatorcontrib><creatorcontrib>Kongqiao Wang</creatorcontrib><creatorcontrib>Hanqing Lu</creatorcontrib><title>Hand Gesture Recognition Using Fast Multi-scale Analysis</title><title>Fourth International Conference on Image and Graphics (ICIG 2007)</title><addtitle>ICIG</addtitle><description>Hand gesture has been used as a natural and efficient way in human computer interaction. Due to independence of auxiliary input devices, vision-based hand interfaces is more favorable for users. However, the process of hand gesture recognition is very time consuming, which often brings much frustration to users. In this paper, we propose a fast feature detection and description approach which can significantly speed up hand gesture recognition. Firstly, integral image is used to approximate Gaussian derivatives to calculate image convolution in feature detection. Then multi-scale geometric descriptors at feature points are obtained to represent hand gestures. Finally gesture is recognized with its geometric configuration. Experiments show that the proposed method needs much less time consumption while obtains comparative performance with its counterpart in literatures.</description><subject>Boosting</subject><subject>Computational efficiency</subject><subject>Computer vision</subject><subject>Convolution</subject><subject>Detectors</subject><subject>Graphics</subject><subject>Human computer interaction</subject><subject>Pattern recognition</subject><subject>Pervasive computing</subject><subject>Pixel</subject><isbn>9780769529295</isbn><isbn>0769529291</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjUFLwzAYQAMiKLM3b17yB1rz5Uua5DiK6wobgrjzSNsvI1I7abLD_r0DfZd3e4-xZxAVgHCvXdO1lRTCVFrescIZK0zttHTS6QdWpPQlbqBTRtpHZrd-HnlLKV8W4h80nE9zzPE880OK84lvfMp8f5lyLNPgJ-Lr2U_XFNMTuw9-SlT8e8UOm7fPZlvu3tuuWe_KCEbnEvF2AgrQ98LKHkciqFFh31sr6-AGPYIcQ1CDJl-jRQv1CDgINAZUCLhiL3_dSETHnyV---V6VNIZMIC_k61Dqg</recordid><startdate>200708</startdate><enddate>200708</enddate><creator>Yikai Fang</creator><creator>Jian Cheng</creator><creator>Kongqiao Wang</creator><creator>Hanqing Lu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200708</creationdate><title>Hand Gesture Recognition Using Fast Multi-scale Analysis</title><author>Yikai Fang ; Jian Cheng ; Kongqiao Wang ; Hanqing Lu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-333941ef1bb082b3dee16343bb8826f9c5d12dff4c5ea6383816d13c037714ff3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Boosting</topic><topic>Computational efficiency</topic><topic>Computer vision</topic><topic>Convolution</topic><topic>Detectors</topic><topic>Graphics</topic><topic>Human computer interaction</topic><topic>Pattern recognition</topic><topic>Pervasive computing</topic><topic>Pixel</topic><toplevel>online_resources</toplevel><creatorcontrib>Yikai Fang</creatorcontrib><creatorcontrib>Jian Cheng</creatorcontrib><creatorcontrib>Kongqiao Wang</creatorcontrib><creatorcontrib>Hanqing Lu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yikai Fang</au><au>Jian Cheng</au><au>Kongqiao Wang</au><au>Hanqing Lu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hand Gesture Recognition Using Fast Multi-scale Analysis</atitle><btitle>Fourth International Conference on Image and Graphics (ICIG 2007)</btitle><stitle>ICIG</stitle><date>2007-08</date><risdate>2007</risdate><spage>694</spage><epage>698</epage><pages>694-698</pages><isbn>9780769529295</isbn><isbn>0769529291</isbn><abstract>Hand gesture has been used as a natural and efficient way in human computer interaction. Due to independence of auxiliary input devices, vision-based hand interfaces is more favorable for users. However, the process of hand gesture recognition is very time consuming, which often brings much frustration to users. In this paper, we propose a fast feature detection and description approach which can significantly speed up hand gesture recognition. Firstly, integral image is used to approximate Gaussian derivatives to calculate image convolution in feature detection. Then multi-scale geometric descriptors at feature points are obtained to represent hand gestures. Finally gesture is recognized with its geometric configuration. Experiments show that the proposed method needs much less time consumption while obtains comparative performance with its counterpart in literatures.</abstract><pub>IEEE</pub><doi>10.1109/ICIG.2007.52</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780769529295
ispartof Fourth International Conference on Image and Graphics (ICIG 2007), 2007, p.694-698
issn
language eng
recordid cdi_ieee_primary_4297171
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Boosting
Computational efficiency
Computer vision
Convolution
Detectors
Graphics
Human computer interaction
Pattern recognition
Pervasive computing
Pixel
title Hand Gesture Recognition Using Fast Multi-scale Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T14%3A09%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hand%20Gesture%20Recognition%20Using%20Fast%20Multi-scale%20Analysis&rft.btitle=Fourth%20International%20Conference%20on%20Image%20and%20Graphics%20(ICIG%202007)&rft.au=Yikai%20Fang&rft.date=2007-08&rft.spage=694&rft.epage=698&rft.pages=694-698&rft.isbn=9780769529295&rft.isbn_list=0769529291&rft_id=info:doi/10.1109/ICIG.2007.52&rft_dat=%3Cieee_6IE%3E4297171%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4297171&rfr_iscdi=true