Learning Fuzzy Rule Based Classifier with Rule Weights Optimization and Structure Selection by a Genetic Algorithm
This paper presents a method for designing fuzzy rule based systems for pattern recognition. The resulting model is interpretable as linguistic rules and can be used for deep understanding of data. The classifier performance is optimized in the least squares sense and the model complexity is minimiz...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Evsukoff, A.G. |
description | This paper presents a method for designing fuzzy rule based systems for pattern recognition. The resulting model is interpretable as linguistic rules and can be used for deep understanding of data. The classifier performance is optimized in the least squares sense and the model complexity is minimized in a structure selection search, performed by a genetic algorithm The method is tested against benchmark classification problems found in the literature, with good results. |
doi_str_mv | 10.1109/FUZZY.2007.4295471 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4295471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4295471</ieee_id><sourcerecordid>4295471</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-457c2dc5919a9110f6fe6d1948fc546fbf605962bf21d393db6c466f7769a9063</originalsourceid><addsrcrecordid>eNotUF1PAjEQrFETEfkD-tI_cNj2-nF9RCJoQkIiGCMvpNfbQs1xkLYXA7_ei7Avm5nJTHYWoUdKhpQS_Tz5XK2-h4wQNeRMC67oFRpoVVDOOKeMEnGN7i-AaH2Dep2ryJQo-B0axPhDutGccqF6KMzAhMY3GzxpT6cj_mhrwC8mQoXHtYnROw8B__q0PUtf4DfbFPH8kPzOn0zy-wabpsKLFFqb2gB4ATXYf748YoOn0EDyFo_qzT50ObsHdOtMHWFw2X20nLwux2_ZbD59H49mmdckZd11llVWaKqN7no76UBWVPPCWcGlK50kQktWOkarXOdVKS2X0iklOwOReR89nWM9AKwPwe9MOK4vH8v_ADDQXmg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Learning Fuzzy Rule Based Classifier with Rule Weights Optimization and Structure Selection by a Genetic Algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Evsukoff, A.G.</creator><creatorcontrib>Evsukoff, A.G.</creatorcontrib><description>This paper presents a method for designing fuzzy rule based systems for pattern recognition. The resulting model is interpretable as linguistic rules and can be used for deep understanding of data. The classifier performance is optimized in the least squares sense and the model complexity is minimized in a structure selection search, performed by a genetic algorithm The method is tested against benchmark classification problems found in the literature, with good results.</description><identifier>ISSN: 1098-7584</identifier><identifier>ISBN: 1424412099</identifier><identifier>ISBN: 9781424412099</identifier><identifier>EISBN: 9781424412105</identifier><identifier>EISBN: 1424412102</identifier><identifier>DOI: 10.1109/FUZZY.2007.4295471</identifier><language>eng</language><publisher>IEEE</publisher><subject>Association rules ; Benchmark testing ; Data mining ; Design optimization ; Fuzzy sets ; Fuzzy systems ; Genetic algorithms ; Input variables ; Machine learning ; Parameter estimation</subject><ispartof>2007 IEEE International Fuzzy Systems Conference, 2007, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4295471$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4295471$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Evsukoff, A.G.</creatorcontrib><title>Learning Fuzzy Rule Based Classifier with Rule Weights Optimization and Structure Selection by a Genetic Algorithm</title><title>2007 IEEE International Fuzzy Systems Conference</title><addtitle>FUZZY</addtitle><description>This paper presents a method for designing fuzzy rule based systems for pattern recognition. The resulting model is interpretable as linguistic rules and can be used for deep understanding of data. The classifier performance is optimized in the least squares sense and the model complexity is minimized in a structure selection search, performed by a genetic algorithm The method is tested against benchmark classification problems found in the literature, with good results.</description><subject>Association rules</subject><subject>Benchmark testing</subject><subject>Data mining</subject><subject>Design optimization</subject><subject>Fuzzy sets</subject><subject>Fuzzy systems</subject><subject>Genetic algorithms</subject><subject>Input variables</subject><subject>Machine learning</subject><subject>Parameter estimation</subject><issn>1098-7584</issn><isbn>1424412099</isbn><isbn>9781424412099</isbn><isbn>9781424412105</isbn><isbn>1424412102</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUF1PAjEQrFETEfkD-tI_cNj2-nF9RCJoQkIiGCMvpNfbQs1xkLYXA7_ei7Avm5nJTHYWoUdKhpQS_Tz5XK2-h4wQNeRMC67oFRpoVVDOOKeMEnGN7i-AaH2Dep2ryJQo-B0axPhDutGccqF6KMzAhMY3GzxpT6cj_mhrwC8mQoXHtYnROw8B__q0PUtf4DfbFPH8kPzOn0zy-wabpsKLFFqb2gB4ATXYf748YoOn0EDyFo_qzT50ObsHdOtMHWFw2X20nLwux2_ZbD59H49mmdckZd11llVWaKqN7no76UBWVPPCWcGlK50kQktWOkarXOdVKS2X0iklOwOReR89nWM9AKwPwe9MOK4vH8v_ADDQXmg</recordid><startdate>200706</startdate><enddate>200706</enddate><creator>Evsukoff, A.G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200706</creationdate><title>Learning Fuzzy Rule Based Classifier with Rule Weights Optimization and Structure Selection by a Genetic Algorithm</title><author>Evsukoff, A.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-457c2dc5919a9110f6fe6d1948fc546fbf605962bf21d393db6c466f7769a9063</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Association rules</topic><topic>Benchmark testing</topic><topic>Data mining</topic><topic>Design optimization</topic><topic>Fuzzy sets</topic><topic>Fuzzy systems</topic><topic>Genetic algorithms</topic><topic>Input variables</topic><topic>Machine learning</topic><topic>Parameter estimation</topic><toplevel>online_resources</toplevel><creatorcontrib>Evsukoff, A.G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Evsukoff, A.G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Learning Fuzzy Rule Based Classifier with Rule Weights Optimization and Structure Selection by a Genetic Algorithm</atitle><btitle>2007 IEEE International Fuzzy Systems Conference</btitle><stitle>FUZZY</stitle><date>2007-06</date><risdate>2007</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1098-7584</issn><isbn>1424412099</isbn><isbn>9781424412099</isbn><eisbn>9781424412105</eisbn><eisbn>1424412102</eisbn><abstract>This paper presents a method for designing fuzzy rule based systems for pattern recognition. The resulting model is interpretable as linguistic rules and can be used for deep understanding of data. The classifier performance is optimized in the least squares sense and the model complexity is minimized in a structure selection search, performed by a genetic algorithm The method is tested against benchmark classification problems found in the literature, with good results.</abstract><pub>IEEE</pub><doi>10.1109/FUZZY.2007.4295471</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1098-7584 |
ispartof | 2007 IEEE International Fuzzy Systems Conference, 2007, p.1-6 |
issn | 1098-7584 |
language | eng |
recordid | cdi_ieee_primary_4295471 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Association rules Benchmark testing Data mining Design optimization Fuzzy sets Fuzzy systems Genetic algorithms Input variables Machine learning Parameter estimation |
title | Learning Fuzzy Rule Based Classifier with Rule Weights Optimization and Structure Selection by a Genetic Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A20%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Learning%20Fuzzy%20Rule%20Based%20Classifier%20with%20Rule%20Weights%20Optimization%20and%20Structure%20Selection%20by%20a%20Genetic%20Algorithm&rft.btitle=2007%20IEEE%20International%20Fuzzy%20Systems%20Conference&rft.au=Evsukoff,%20A.G.&rft.date=2007-06&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1098-7584&rft.isbn=1424412099&rft.isbn_list=9781424412099&rft_id=info:doi/10.1109/FUZZY.2007.4295471&rft_dat=%3Cieee_6IE%3E4295471%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424412105&rft.eisbn_list=1424412102&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4295471&rfr_iscdi=true |