Learning Fuzzy Rule Based Classifier with Rule Weights Optimization and Structure Selection by a Genetic Algorithm

This paper presents a method for designing fuzzy rule based systems for pattern recognition. The resulting model is interpretable as linguistic rules and can be used for deep understanding of data. The classifier performance is optimized in the least squares sense and the model complexity is minimiz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Evsukoff, A.G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Evsukoff, A.G.
description This paper presents a method for designing fuzzy rule based systems for pattern recognition. The resulting model is interpretable as linguistic rules and can be used for deep understanding of data. The classifier performance is optimized in the least squares sense and the model complexity is minimized in a structure selection search, performed by a genetic algorithm The method is tested against benchmark classification problems found in the literature, with good results.
doi_str_mv 10.1109/FUZZY.2007.4295471
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4295471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4295471</ieee_id><sourcerecordid>4295471</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-457c2dc5919a9110f6fe6d1948fc546fbf605962bf21d393db6c466f7769a9063</originalsourceid><addsrcrecordid>eNotUF1PAjEQrFETEfkD-tI_cNj2-nF9RCJoQkIiGCMvpNfbQs1xkLYXA7_ei7Avm5nJTHYWoUdKhpQS_Tz5XK2-h4wQNeRMC67oFRpoVVDOOKeMEnGN7i-AaH2Dep2ryJQo-B0axPhDutGccqF6KMzAhMY3GzxpT6cj_mhrwC8mQoXHtYnROw8B__q0PUtf4DfbFPH8kPzOn0zy-wabpsKLFFqb2gB4ATXYf748YoOn0EDyFo_qzT50ObsHdOtMHWFw2X20nLwux2_ZbD59H49mmdckZd11llVWaKqN7no76UBWVPPCWcGlK50kQktWOkarXOdVKS2X0iklOwOReR89nWM9AKwPwe9MOK4vH8v_ADDQXmg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Learning Fuzzy Rule Based Classifier with Rule Weights Optimization and Structure Selection by a Genetic Algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Evsukoff, A.G.</creator><creatorcontrib>Evsukoff, A.G.</creatorcontrib><description>This paper presents a method for designing fuzzy rule based systems for pattern recognition. The resulting model is interpretable as linguistic rules and can be used for deep understanding of data. The classifier performance is optimized in the least squares sense and the model complexity is minimized in a structure selection search, performed by a genetic algorithm The method is tested against benchmark classification problems found in the literature, with good results.</description><identifier>ISSN: 1098-7584</identifier><identifier>ISBN: 1424412099</identifier><identifier>ISBN: 9781424412099</identifier><identifier>EISBN: 9781424412105</identifier><identifier>EISBN: 1424412102</identifier><identifier>DOI: 10.1109/FUZZY.2007.4295471</identifier><language>eng</language><publisher>IEEE</publisher><subject>Association rules ; Benchmark testing ; Data mining ; Design optimization ; Fuzzy sets ; Fuzzy systems ; Genetic algorithms ; Input variables ; Machine learning ; Parameter estimation</subject><ispartof>2007 IEEE International Fuzzy Systems Conference, 2007, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4295471$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4295471$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Evsukoff, A.G.</creatorcontrib><title>Learning Fuzzy Rule Based Classifier with Rule Weights Optimization and Structure Selection by a Genetic Algorithm</title><title>2007 IEEE International Fuzzy Systems Conference</title><addtitle>FUZZY</addtitle><description>This paper presents a method for designing fuzzy rule based systems for pattern recognition. The resulting model is interpretable as linguistic rules and can be used for deep understanding of data. The classifier performance is optimized in the least squares sense and the model complexity is minimized in a structure selection search, performed by a genetic algorithm The method is tested against benchmark classification problems found in the literature, with good results.</description><subject>Association rules</subject><subject>Benchmark testing</subject><subject>Data mining</subject><subject>Design optimization</subject><subject>Fuzzy sets</subject><subject>Fuzzy systems</subject><subject>Genetic algorithms</subject><subject>Input variables</subject><subject>Machine learning</subject><subject>Parameter estimation</subject><issn>1098-7584</issn><isbn>1424412099</isbn><isbn>9781424412099</isbn><isbn>9781424412105</isbn><isbn>1424412102</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUF1PAjEQrFETEfkD-tI_cNj2-nF9RCJoQkIiGCMvpNfbQs1xkLYXA7_ei7Avm5nJTHYWoUdKhpQS_Tz5XK2-h4wQNeRMC67oFRpoVVDOOKeMEnGN7i-AaH2Dep2ryJQo-B0axPhDutGccqF6KMzAhMY3GzxpT6cj_mhrwC8mQoXHtYnROw8B__q0PUtf4DfbFPH8kPzOn0zy-wabpsKLFFqb2gB4ATXYf748YoOn0EDyFo_qzT50ObsHdOtMHWFw2X20nLwux2_ZbD59H49mmdckZd11llVWaKqN7no76UBWVPPCWcGlK50kQktWOkarXOdVKS2X0iklOwOReR89nWM9AKwPwe9MOK4vH8v_ADDQXmg</recordid><startdate>200706</startdate><enddate>200706</enddate><creator>Evsukoff, A.G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200706</creationdate><title>Learning Fuzzy Rule Based Classifier with Rule Weights Optimization and Structure Selection by a Genetic Algorithm</title><author>Evsukoff, A.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-457c2dc5919a9110f6fe6d1948fc546fbf605962bf21d393db6c466f7769a9063</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Association rules</topic><topic>Benchmark testing</topic><topic>Data mining</topic><topic>Design optimization</topic><topic>Fuzzy sets</topic><topic>Fuzzy systems</topic><topic>Genetic algorithms</topic><topic>Input variables</topic><topic>Machine learning</topic><topic>Parameter estimation</topic><toplevel>online_resources</toplevel><creatorcontrib>Evsukoff, A.G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Evsukoff, A.G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Learning Fuzzy Rule Based Classifier with Rule Weights Optimization and Structure Selection by a Genetic Algorithm</atitle><btitle>2007 IEEE International Fuzzy Systems Conference</btitle><stitle>FUZZY</stitle><date>2007-06</date><risdate>2007</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1098-7584</issn><isbn>1424412099</isbn><isbn>9781424412099</isbn><eisbn>9781424412105</eisbn><eisbn>1424412102</eisbn><abstract>This paper presents a method for designing fuzzy rule based systems for pattern recognition. The resulting model is interpretable as linguistic rules and can be used for deep understanding of data. The classifier performance is optimized in the least squares sense and the model complexity is minimized in a structure selection search, performed by a genetic algorithm The method is tested against benchmark classification problems found in the literature, with good results.</abstract><pub>IEEE</pub><doi>10.1109/FUZZY.2007.4295471</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1098-7584
ispartof 2007 IEEE International Fuzzy Systems Conference, 2007, p.1-6
issn 1098-7584
language eng
recordid cdi_ieee_primary_4295471
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Association rules
Benchmark testing
Data mining
Design optimization
Fuzzy sets
Fuzzy systems
Genetic algorithms
Input variables
Machine learning
Parameter estimation
title Learning Fuzzy Rule Based Classifier with Rule Weights Optimization and Structure Selection by a Genetic Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A20%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Learning%20Fuzzy%20Rule%20Based%20Classifier%20with%20Rule%20Weights%20Optimization%20and%20Structure%20Selection%20by%20a%20Genetic%20Algorithm&rft.btitle=2007%20IEEE%20International%20Fuzzy%20Systems%20Conference&rft.au=Evsukoff,%20A.G.&rft.date=2007-06&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1098-7584&rft.isbn=1424412099&rft.isbn_list=9781424412099&rft_id=info:doi/10.1109/FUZZY.2007.4295471&rft_dat=%3Cieee_6IE%3E4295471%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424412105&rft.eisbn_list=1424412102&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4295471&rfr_iscdi=true