Elements of Chaotic Dynamics in Linear Systems

It is shown that regimes with dynamical chaos are inherent not only to nonlinear system but they are widely represented in dynamics of linear systems.

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Buts, V.A., Nerukh, A.G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 365
container_issue
container_start_page 363
container_title
container_volume 1
creator Buts, V.A.
Nerukh, A.G.
description It is shown that regimes with dynamical chaos are inherent not only to nonlinear system but they are widely represented in dynamics of linear systems.
doi_str_mv 10.1109/MSMW.2007.4294663
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4294663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4294663</ieee_id><sourcerecordid>4294663</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-17c7b6949c69d75ca78026e19b48e40e3dff66155df961984bf0cbad6b37f6153</originalsourceid><addsrcrecordid>eNotj81Kw0AURgdEUGoeQNzMCyTOnf9ZSqxaSHFRS5dlZnIHR5pUMtnk7S3Yb3PgLA58hDwCawCYe97utoeGM2YayZ3UWtyQyhkLkksJXBh-R6pSfthlwilr9T1p1icccJwLPSfafvvznCN9XUY_5FhoHmmXR_QT3S1lxqE8kNvkTwWrK1dk_7b-aj_q7vN90750dQaj5hpMNEE76aJ2vVHRG8u4RnBBWpQMRZ-S1qBUn5wGZ2VILAbf6yBMunixIk__3YyIx98pD35ajtdX4g99I0Er</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Elements of Chaotic Dynamics in Linear Systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Buts, V.A. ; Nerukh, A.G.</creator><creatorcontrib>Buts, V.A. ; Nerukh, A.G.</creatorcontrib><description>It is shown that regimes with dynamical chaos are inherent not only to nonlinear system but they are widely represented in dynamics of linear systems.</description><identifier>ISBN: 9781424412372</identifier><identifier>ISBN: 1424412374</identifier><identifier>DOI: 10.1109/MSMW.2007.4294663</identifier><language>eng</language><publisher>IEEE</publisher><subject>Chaos ; Frequency ; Geometrical optics ; Linear systems ; Maxwell equations ; Nonlinear dynamical systems ; Nonlinear equations ; Nonlinear systems ; Oscillators ; Quantum mechanics</subject><ispartof>2007 International Kharkov Symposium Physics and Engrg. of Millimeter and Sub-Millimeter Waves (MSMW), 2007, Vol.1, p.363-365</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4294663$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4294663$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Buts, V.A.</creatorcontrib><creatorcontrib>Nerukh, A.G.</creatorcontrib><title>Elements of Chaotic Dynamics in Linear Systems</title><title>2007 International Kharkov Symposium Physics and Engrg. of Millimeter and Sub-Millimeter Waves (MSMW)</title><addtitle>MSMW</addtitle><description>It is shown that regimes with dynamical chaos are inherent not only to nonlinear system but they are widely represented in dynamics of linear systems.</description><subject>Chaos</subject><subject>Frequency</subject><subject>Geometrical optics</subject><subject>Linear systems</subject><subject>Maxwell equations</subject><subject>Nonlinear dynamical systems</subject><subject>Nonlinear equations</subject><subject>Nonlinear systems</subject><subject>Oscillators</subject><subject>Quantum mechanics</subject><isbn>9781424412372</isbn><isbn>1424412374</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj81Kw0AURgdEUGoeQNzMCyTOnf9ZSqxaSHFRS5dlZnIHR5pUMtnk7S3Yb3PgLA58hDwCawCYe97utoeGM2YayZ3UWtyQyhkLkksJXBh-R6pSfthlwilr9T1p1icccJwLPSfafvvznCN9XUY_5FhoHmmXR_QT3S1lxqE8kNvkTwWrK1dk_7b-aj_q7vN90750dQaj5hpMNEE76aJ2vVHRG8u4RnBBWpQMRZ-S1qBUn5wGZ2VILAbf6yBMunixIk__3YyIx98pD35ajtdX4g99I0Er</recordid><startdate>200706</startdate><enddate>200706</enddate><creator>Buts, V.A.</creator><creator>Nerukh, A.G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200706</creationdate><title>Elements of Chaotic Dynamics in Linear Systems</title><author>Buts, V.A. ; Nerukh, A.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-17c7b6949c69d75ca78026e19b48e40e3dff66155df961984bf0cbad6b37f6153</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Chaos</topic><topic>Frequency</topic><topic>Geometrical optics</topic><topic>Linear systems</topic><topic>Maxwell equations</topic><topic>Nonlinear dynamical systems</topic><topic>Nonlinear equations</topic><topic>Nonlinear systems</topic><topic>Oscillators</topic><topic>Quantum mechanics</topic><toplevel>online_resources</toplevel><creatorcontrib>Buts, V.A.</creatorcontrib><creatorcontrib>Nerukh, A.G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Buts, V.A.</au><au>Nerukh, A.G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Elements of Chaotic Dynamics in Linear Systems</atitle><btitle>2007 International Kharkov Symposium Physics and Engrg. of Millimeter and Sub-Millimeter Waves (MSMW)</btitle><stitle>MSMW</stitle><date>2007-06</date><risdate>2007</risdate><volume>1</volume><spage>363</spage><epage>365</epage><pages>363-365</pages><isbn>9781424412372</isbn><isbn>1424412374</isbn><abstract>It is shown that regimes with dynamical chaos are inherent not only to nonlinear system but they are widely represented in dynamics of linear systems.</abstract><pub>IEEE</pub><doi>10.1109/MSMW.2007.4294663</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424412372
ispartof 2007 International Kharkov Symposium Physics and Engrg. of Millimeter and Sub-Millimeter Waves (MSMW), 2007, Vol.1, p.363-365
issn
language eng
recordid cdi_ieee_primary_4294663
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Chaos
Frequency
Geometrical optics
Linear systems
Maxwell equations
Nonlinear dynamical systems
Nonlinear equations
Nonlinear systems
Oscillators
Quantum mechanics
title Elements of Chaotic Dynamics in Linear Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A24%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Elements%20of%20Chaotic%20Dynamics%20in%20Linear%20Systems&rft.btitle=2007%20International%20Kharkov%20Symposium%20Physics%20and%20Engrg.%20of%20Millimeter%20and%20Sub-Millimeter%20Waves%20(MSMW)&rft.au=Buts,%20V.A.&rft.date=2007-06&rft.volume=1&rft.spage=363&rft.epage=365&rft.pages=363-365&rft.isbn=9781424412372&rft.isbn_list=1424412374&rft_id=info:doi/10.1109/MSMW.2007.4294663&rft_dat=%3Cieee_6IE%3E4294663%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4294663&rfr_iscdi=true