Scaling POMDPs for Spoken Dialog Management

Control in spoken dialog systems is challenging largely because automatic speech recognition is unreliable, and hence the state of the conversation can never be known with certainty. Partially observable Markov decision processes (POMDPs) provide a principled mathematical framework for planning and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on audio, speech, and language processing speech, and language processing, 2007-09, Vol.15 (7), p.2116-2129
Hauptverfasser: Williams, J.D., Young, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Control in spoken dialog systems is challenging largely because automatic speech recognition is unreliable, and hence the state of the conversation can never be known with certainty. Partially observable Markov decision processes (POMDPs) provide a principled mathematical framework for planning and control in this context; however, POMDPs face severe scalability challenges, and past work has been limited to trivially small dialog tasks. This paper presents a novel POMDP optimization technique-composite summary point-based value iteration (CSPBVI)-which enables optimization to be performed on slot-filling POMDP-based dialog managers of a realistic size. Using dialog models trained on data from a tourist information domain, simulation results show that CSPBVI scales effectively, outperforms non-POMDP baselines, and is robust to estimation errors.
ISSN:1558-7916
2329-9290
1558-7924
2329-9304
DOI:10.1109/TASL.2007.902050