An Intelligent Diagnostic/Prognostic Framework for Automotive Electrical Systems

Automotive systems are becoming increasingly dependent on electrical components, computer control, and sensors. It has become extremely critical to detect faults in the electrical system and predict the remaining useful life of failing components. This paper introduces an integrated methodology for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Abbas, Manzar, Ferri, Aldo A., Orchard, Marcos E., Vachtsevanos, George J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 357
container_issue
container_start_page 352
container_title
container_volume
creator Abbas, Manzar
Ferri, Aldo A.
Orchard, Marcos E.
Vachtsevanos, George J.
description Automotive systems are becoming increasingly dependent on electrical components, computer control, and sensors. It has become extremely critical to detect faults in the electrical system and predict the remaining useful life of failing components. This paper introduces an integrated methodology for monitoring, modeling, data processing, fault diagnosis, and failure prognosis of critical electrical components such as the battery. The enabling technologies include signal processing, sensor selection and placement, selection and extraction of optimum condition indicators, and accurate fault diagnosis and failure prognosis algorithms that are based on both the physics of failure models and Bayesian estimation methods. The proposed architecture is implementable on-board an Electronic Control Unit (ECU) requiring minimum computational resources. Potential benefits include reduction in maintenance costs, improved asset reliability and availability and longer life of critical components.
doi_str_mv 10.1109/IVS.2007.4290139
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4290139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4290139</ieee_id><sourcerecordid>4290139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c137t-48d33b839bcb271fa26c3194f0a4736b6adde22896716f1c4c119886838f9c63</originalsourceid><addsrcrecordid>eNpFkMtKAzEYRuMNbKt7wU1eYKb5k0wuy6G2OlCw0OK2ZDKZEp2LJFHp27twwNV34MBZfAg9AMkBiF5Wb_ucEiJzTjUBpi_QHDjlHIhQcIlmVHCaSQr86l9Ido1moBlkpFDyFs1jfCekKCiFGdqVA66G5LrOn9yQ8JM3p2GMydvlLowT4k0wvfsZwwdux4DLrzT2Y_LfDq87Z1Pw1nR4f47J9fEO3bSmi-5-2gU6bNaH1Uu2fX2uVuU2s8BkyrhqGKsV07WtqYTWUGEZaN4SwyUTtTBN4yhVWkgQLVhuAbRSQjHVaivYAj3-Zb1z7vgZfG_C-Ti9wn4B68JSCA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An Intelligent Diagnostic/Prognostic Framework for Automotive Electrical Systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Abbas, Manzar ; Ferri, Aldo A. ; Orchard, Marcos E. ; Vachtsevanos, George J.</creator><creatorcontrib>Abbas, Manzar ; Ferri, Aldo A. ; Orchard, Marcos E. ; Vachtsevanos, George J.</creatorcontrib><description>Automotive systems are becoming increasingly dependent on electrical components, computer control, and sensors. It has become extremely critical to detect faults in the electrical system and predict the remaining useful life of failing components. This paper introduces an integrated methodology for monitoring, modeling, data processing, fault diagnosis, and failure prognosis of critical electrical components such as the battery. The enabling technologies include signal processing, sensor selection and placement, selection and extraction of optimum condition indicators, and accurate fault diagnosis and failure prognosis algorithms that are based on both the physics of failure models and Bayesian estimation methods. The proposed architecture is implementable on-board an Electronic Control Unit (ECU) requiring minimum computational resources. Potential benefits include reduction in maintenance costs, improved asset reliability and availability and longer life of critical components.</description><identifier>ISSN: 1931-0587</identifier><identifier>ISBN: 1424410673</identifier><identifier>ISBN: 9781424410675</identifier><identifier>EISSN: 2642-7214</identifier><identifier>EISBN: 1424410681</identifier><identifier>EISBN: 9781424410682</identifier><identifier>DOI: 10.1109/IVS.2007.4290139</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automotive engineering ; Computerized monitoring ; Condition monitoring ; Control systems ; Electrical fault detection ; Fault diagnosis ; Intelligent sensors ; Intelligent vehicles ; Sensor systems ; Signal processing algorithms</subject><ispartof>2007 IEEE Intelligent Vehicles Symposium, 2007, p.352-357</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c137t-48d33b839bcb271fa26c3194f0a4736b6adde22896716f1c4c119886838f9c63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4290139$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4290139$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Abbas, Manzar</creatorcontrib><creatorcontrib>Ferri, Aldo A.</creatorcontrib><creatorcontrib>Orchard, Marcos E.</creatorcontrib><creatorcontrib>Vachtsevanos, George J.</creatorcontrib><title>An Intelligent Diagnostic/Prognostic Framework for Automotive Electrical Systems</title><title>2007 IEEE Intelligent Vehicles Symposium</title><addtitle>IVS</addtitle><description>Automotive systems are becoming increasingly dependent on electrical components, computer control, and sensors. It has become extremely critical to detect faults in the electrical system and predict the remaining useful life of failing components. This paper introduces an integrated methodology for monitoring, modeling, data processing, fault diagnosis, and failure prognosis of critical electrical components such as the battery. The enabling technologies include signal processing, sensor selection and placement, selection and extraction of optimum condition indicators, and accurate fault diagnosis and failure prognosis algorithms that are based on both the physics of failure models and Bayesian estimation methods. The proposed architecture is implementable on-board an Electronic Control Unit (ECU) requiring minimum computational resources. Potential benefits include reduction in maintenance costs, improved asset reliability and availability and longer life of critical components.</description><subject>Automotive engineering</subject><subject>Computerized monitoring</subject><subject>Condition monitoring</subject><subject>Control systems</subject><subject>Electrical fault detection</subject><subject>Fault diagnosis</subject><subject>Intelligent sensors</subject><subject>Intelligent vehicles</subject><subject>Sensor systems</subject><subject>Signal processing algorithms</subject><issn>1931-0587</issn><issn>2642-7214</issn><isbn>1424410673</isbn><isbn>9781424410675</isbn><isbn>1424410681</isbn><isbn>9781424410682</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkMtKAzEYRuMNbKt7wU1eYKb5k0wuy6G2OlCw0OK2ZDKZEp2LJFHp27twwNV34MBZfAg9AMkBiF5Wb_ucEiJzTjUBpi_QHDjlHIhQcIlmVHCaSQr86l9Ido1moBlkpFDyFs1jfCekKCiFGdqVA66G5LrOn9yQ8JM3p2GMydvlLowT4k0wvfsZwwdux4DLrzT2Y_LfDq87Z1Pw1nR4f47J9fEO3bSmi-5-2gU6bNaH1Uu2fX2uVuU2s8BkyrhqGKsV07WtqYTWUGEZaN4SwyUTtTBN4yhVWkgQLVhuAbRSQjHVaivYAj3-Zb1z7vgZfG_C-Ti9wn4B68JSCA</recordid><startdate>200706</startdate><enddate>200706</enddate><creator>Abbas, Manzar</creator><creator>Ferri, Aldo A.</creator><creator>Orchard, Marcos E.</creator><creator>Vachtsevanos, George J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200706</creationdate><title>An Intelligent Diagnostic/Prognostic Framework for Automotive Electrical Systems</title><author>Abbas, Manzar ; Ferri, Aldo A. ; Orchard, Marcos E. ; Vachtsevanos, George J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c137t-48d33b839bcb271fa26c3194f0a4736b6adde22896716f1c4c119886838f9c63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Automotive engineering</topic><topic>Computerized monitoring</topic><topic>Condition monitoring</topic><topic>Control systems</topic><topic>Electrical fault detection</topic><topic>Fault diagnosis</topic><topic>Intelligent sensors</topic><topic>Intelligent vehicles</topic><topic>Sensor systems</topic><topic>Signal processing algorithms</topic><toplevel>online_resources</toplevel><creatorcontrib>Abbas, Manzar</creatorcontrib><creatorcontrib>Ferri, Aldo A.</creatorcontrib><creatorcontrib>Orchard, Marcos E.</creatorcontrib><creatorcontrib>Vachtsevanos, George J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abbas, Manzar</au><au>Ferri, Aldo A.</au><au>Orchard, Marcos E.</au><au>Vachtsevanos, George J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An Intelligent Diagnostic/Prognostic Framework for Automotive Electrical Systems</atitle><btitle>2007 IEEE Intelligent Vehicles Symposium</btitle><stitle>IVS</stitle><date>2007-06</date><risdate>2007</risdate><spage>352</spage><epage>357</epage><pages>352-357</pages><issn>1931-0587</issn><eissn>2642-7214</eissn><isbn>1424410673</isbn><isbn>9781424410675</isbn><eisbn>1424410681</eisbn><eisbn>9781424410682</eisbn><abstract>Automotive systems are becoming increasingly dependent on electrical components, computer control, and sensors. It has become extremely critical to detect faults in the electrical system and predict the remaining useful life of failing components. This paper introduces an integrated methodology for monitoring, modeling, data processing, fault diagnosis, and failure prognosis of critical electrical components such as the battery. The enabling technologies include signal processing, sensor selection and placement, selection and extraction of optimum condition indicators, and accurate fault diagnosis and failure prognosis algorithms that are based on both the physics of failure models and Bayesian estimation methods. The proposed architecture is implementable on-board an Electronic Control Unit (ECU) requiring minimum computational resources. Potential benefits include reduction in maintenance costs, improved asset reliability and availability and longer life of critical components.</abstract><pub>IEEE</pub><doi>10.1109/IVS.2007.4290139</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1931-0587
ispartof 2007 IEEE Intelligent Vehicles Symposium, 2007, p.352-357
issn 1931-0587
2642-7214
language eng
recordid cdi_ieee_primary_4290139
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Automotive engineering
Computerized monitoring
Condition monitoring
Control systems
Electrical fault detection
Fault diagnosis
Intelligent sensors
Intelligent vehicles
Sensor systems
Signal processing algorithms
title An Intelligent Diagnostic/Prognostic Framework for Automotive Electrical Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A50%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20Intelligent%20Diagnostic/Prognostic%20Framework%20for%20Automotive%20Electrical%20Systems&rft.btitle=2007%20IEEE%20Intelligent%20Vehicles%20Symposium&rft.au=Abbas,%20Manzar&rft.date=2007-06&rft.spage=352&rft.epage=357&rft.pages=352-357&rft.issn=1931-0587&rft.eissn=2642-7214&rft.isbn=1424410673&rft.isbn_list=9781424410675&rft_id=info:doi/10.1109/IVS.2007.4290139&rft_dat=%3Cieee_6IE%3E4290139%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424410681&rft.eisbn_list=9781424410682&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4290139&rfr_iscdi=true