Time-Frequency Based Features for Classification of Walking Patterns

The analysis of gait data has been a challenging problem and several new approaches have been proposed in recent years. This paper describes a novel front-end for classification of gait patterns using data obtained from a tri-axial accelerometer. The novel features consist of delta features, low and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ibrahim, R.K., Ambikairajah, E., Celler, B.G., Lovell, N.H.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 190
container_issue
container_start_page 187
container_title
container_volume
creator Ibrahim, R.K.
Ambikairajah, E.
Celler, B.G.
Lovell, N.H.
description The analysis of gait data has been a challenging problem and several new approaches have been proposed in recent years. This paper describes a novel front-end for classification of gait patterns using data obtained from a tri-axial accelerometer. The novel features consist of delta features, low and high frequency signal variations and energy variations in both frequency bands. The back-end of the system is a Gaussian mixture model based classifier. Using Bayesian adaptation, an overall classification accuracy of 96.1% was achieved for five walking patterns.
doi_str_mv 10.1109/ICDSP.2007.4288550
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4288550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4288550</ieee_id><sourcerecordid>4288550</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-56d4e9d6689a2e39f5b1f40f37a98947f152c51a3784e27cf90efb6fa517e3c63</originalsourceid><addsrcrecordid>eNo1kEtOwzAUAM1PIpRcADa-QIqf_15CSqBSJSpRxLJyk2dkSBOI00VvXyTKahYjzWIIuQE2BWDubl7OXpdTzpiZSm6tUuyE5M5YkFxKZi1XpyTjoFUhlDFn5OpfgDwnGSipC7BGXpI8pU_GGBgtf2MZma3iFotqwJ8ddvWePviEDa3Qj7sBEw39QMvWpxRDrP0Y-472gb779it2H3TpxxGHLl2Ti-DbhPmRE_JWPa7K52Lx8jQv7xdFBKPGQulGomu0ts5zFC6oDQTJgjDeWSdNAMVrBV4YK5GbOjiGYaODV2BQ1FpMyO1fNyLi-nuIWz_s18ch4gCWZU-W</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Time-Frequency Based Features for Classification of Walking Patterns</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ibrahim, R.K. ; Ambikairajah, E. ; Celler, B.G. ; Lovell, N.H.</creator><creatorcontrib>Ibrahim, R.K. ; Ambikairajah, E. ; Celler, B.G. ; Lovell, N.H.</creatorcontrib><description>The analysis of gait data has been a challenging problem and several new approaches have been proposed in recent years. This paper describes a novel front-end for classification of gait patterns using data obtained from a tri-axial accelerometer. The novel features consist of delta features, low and high frequency signal variations and energy variations in both frequency bands. The back-end of the system is a Gaussian mixture model based classifier. Using Bayesian adaptation, an overall classification accuracy of 96.1% was achieved for five walking patterns.</description><identifier>ISSN: 1546-1874</identifier><identifier>ISBN: 1424408814</identifier><identifier>ISBN: 9781424408818</identifier><identifier>EISSN: 2165-3577</identifier><identifier>EISBN: 9781424408825</identifier><identifier>EISBN: 1424408822</identifier><identifier>DOI: 10.1109/ICDSP.2007.4288550</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accelerometers ; accelerometry ; ambulatory monitoring ; Australia ; Biomedical engineering ; Biomedical monitoring ; Gait patterns ; Gaussian mixture models ; Legged locomotion ; Medical services ; Patient monitoring ; Remote monitoring ; Senior citizens ; Time frequency analysis</subject><ispartof>2007 15th International Conference on Digital Signal Processing, 2007, p.187-190</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4288550$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4288550$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ibrahim, R.K.</creatorcontrib><creatorcontrib>Ambikairajah, E.</creatorcontrib><creatorcontrib>Celler, B.G.</creatorcontrib><creatorcontrib>Lovell, N.H.</creatorcontrib><title>Time-Frequency Based Features for Classification of Walking Patterns</title><title>2007 15th International Conference on Digital Signal Processing</title><addtitle>ICDSP</addtitle><description>The analysis of gait data has been a challenging problem and several new approaches have been proposed in recent years. This paper describes a novel front-end for classification of gait patterns using data obtained from a tri-axial accelerometer. The novel features consist of delta features, low and high frequency signal variations and energy variations in both frequency bands. The back-end of the system is a Gaussian mixture model based classifier. Using Bayesian adaptation, an overall classification accuracy of 96.1% was achieved for five walking patterns.</description><subject>Accelerometers</subject><subject>accelerometry</subject><subject>ambulatory monitoring</subject><subject>Australia</subject><subject>Biomedical engineering</subject><subject>Biomedical monitoring</subject><subject>Gait patterns</subject><subject>Gaussian mixture models</subject><subject>Legged locomotion</subject><subject>Medical services</subject><subject>Patient monitoring</subject><subject>Remote monitoring</subject><subject>Senior citizens</subject><subject>Time frequency analysis</subject><issn>1546-1874</issn><issn>2165-3577</issn><isbn>1424408814</isbn><isbn>9781424408818</isbn><isbn>9781424408825</isbn><isbn>1424408822</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kEtOwzAUAM1PIpRcADa-QIqf_15CSqBSJSpRxLJyk2dkSBOI00VvXyTKahYjzWIIuQE2BWDubl7OXpdTzpiZSm6tUuyE5M5YkFxKZi1XpyTjoFUhlDFn5OpfgDwnGSipC7BGXpI8pU_GGBgtf2MZma3iFotqwJ8ddvWePviEDa3Qj7sBEw39QMvWpxRDrP0Y-472gb779it2H3TpxxGHLl2Ti-DbhPmRE_JWPa7K52Lx8jQv7xdFBKPGQulGomu0ts5zFC6oDQTJgjDeWSdNAMVrBV4YK5GbOjiGYaODV2BQ1FpMyO1fNyLi-nuIWz_s18ch4gCWZU-W</recordid><startdate>200707</startdate><enddate>200707</enddate><creator>Ibrahim, R.K.</creator><creator>Ambikairajah, E.</creator><creator>Celler, B.G.</creator><creator>Lovell, N.H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200707</creationdate><title>Time-Frequency Based Features for Classification of Walking Patterns</title><author>Ibrahim, R.K. ; Ambikairajah, E. ; Celler, B.G. ; Lovell, N.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-56d4e9d6689a2e39f5b1f40f37a98947f152c51a3784e27cf90efb6fa517e3c63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Accelerometers</topic><topic>accelerometry</topic><topic>ambulatory monitoring</topic><topic>Australia</topic><topic>Biomedical engineering</topic><topic>Biomedical monitoring</topic><topic>Gait patterns</topic><topic>Gaussian mixture models</topic><topic>Legged locomotion</topic><topic>Medical services</topic><topic>Patient monitoring</topic><topic>Remote monitoring</topic><topic>Senior citizens</topic><topic>Time frequency analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Ibrahim, R.K.</creatorcontrib><creatorcontrib>Ambikairajah, E.</creatorcontrib><creatorcontrib>Celler, B.G.</creatorcontrib><creatorcontrib>Lovell, N.H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ibrahim, R.K.</au><au>Ambikairajah, E.</au><au>Celler, B.G.</au><au>Lovell, N.H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Time-Frequency Based Features for Classification of Walking Patterns</atitle><btitle>2007 15th International Conference on Digital Signal Processing</btitle><stitle>ICDSP</stitle><date>2007-07</date><risdate>2007</risdate><spage>187</spage><epage>190</epage><pages>187-190</pages><issn>1546-1874</issn><eissn>2165-3577</eissn><isbn>1424408814</isbn><isbn>9781424408818</isbn><eisbn>9781424408825</eisbn><eisbn>1424408822</eisbn><abstract>The analysis of gait data has been a challenging problem and several new approaches have been proposed in recent years. This paper describes a novel front-end for classification of gait patterns using data obtained from a tri-axial accelerometer. The novel features consist of delta features, low and high frequency signal variations and energy variations in both frequency bands. The back-end of the system is a Gaussian mixture model based classifier. Using Bayesian adaptation, an overall classification accuracy of 96.1% was achieved for five walking patterns.</abstract><pub>IEEE</pub><doi>10.1109/ICDSP.2007.4288550</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1546-1874
ispartof 2007 15th International Conference on Digital Signal Processing, 2007, p.187-190
issn 1546-1874
2165-3577
language eng
recordid cdi_ieee_primary_4288550
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accelerometers
accelerometry
ambulatory monitoring
Australia
Biomedical engineering
Biomedical monitoring
Gait patterns
Gaussian mixture models
Legged locomotion
Medical services
Patient monitoring
Remote monitoring
Senior citizens
Time frequency analysis
title Time-Frequency Based Features for Classification of Walking Patterns
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A05%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Time-Frequency%20Based%20Features%20for%20Classification%20of%20Walking%20Patterns&rft.btitle=2007%2015th%20International%20Conference%20on%20Digital%20Signal%20Processing&rft.au=Ibrahim,%20R.K.&rft.date=2007-07&rft.spage=187&rft.epage=190&rft.pages=187-190&rft.issn=1546-1874&rft.eissn=2165-3577&rft.isbn=1424408814&rft.isbn_list=9781424408818&rft_id=info:doi/10.1109/ICDSP.2007.4288550&rft_dat=%3Cieee_6IE%3E4288550%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424408825&rft.eisbn_list=1424408822&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4288550&rfr_iscdi=true