Statistical Classification of Mammograms Using Random Forest Classifier
A woman in general has 12% chance of developing breast cancer and a 3.5% chance of dying from this disease, hence detection of cancer has received considerable attention in the recent years. Mammogram is an X-ray of the breast used to detect and diagnose breast cancer and other abnormalities. The ai...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 183 |
---|---|
container_issue | |
container_start_page | 178 |
container_title | |
container_volume | |
creator | Vibha, L. Harshavardhan, G.M. Pranaw, K. Shenoy, P.D. Venugopal, K.R. Patnaik, L.M. |
description | A woman in general has 12% chance of developing breast cancer and a 3.5% chance of dying from this disease, hence detection of cancer has received considerable attention in the recent years. Mammogram is an X-ray of the breast used to detect and diagnose breast cancer and other abnormalities. The aim of a screening mammogram is to detect a tumor that cannot be physically detected. This paper proposes a Decision Forest Classifier (DFC) for classifying mammograms. Results of screening the mammograms are organised by classification and finally grouped into three categories i.e., Normal, Benign and malign. Experimental results obtained indicate that the proposed method performs relatively well with the classification accuracy reaching nearly 90.45% in comparison with the already existing algorithms. |
doi_str_mv | 10.1109/ICISIP.2006.4286091 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4286091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4286091</ieee_id><sourcerecordid>4286091</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-e562b5103ba6ffc1b7af3d9a00d29f4fe19fa6386530fcb033445ccf46f9a8c03</originalsourceid><addsrcrecordid>eNo9j81OwzAQhI0QElDyBL34BVJ2bceJjyiiJVIRiNJztXHsyig_KPaFt6cSLXOZ-Q4z0jC2RFghgnls6mbXvK8EgF4pUWkweMXuUQmlQKMw1ywzZXVhxFuWxfgFJ0lTKCHu2GaXKIWYgqWe1z3FGPwppzCNfPL8lYZhOs40RL6PYTzyDxq7aeDraXYx_Rfc_MBuPPXRZWdfsP36-bN-ybdvm6Z-2uYByyLlrtCiLRBkS9p7i21JXnaGADphvPIOjSctK11I8LYFKZUqrPVKe0OVBblgy7_d4Jw7fM9hoPnncP4ufwEOWU4s</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Statistical Classification of Mammograms Using Random Forest Classifier</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Vibha, L. ; Harshavardhan, G.M. ; Pranaw, K. ; Shenoy, P.D. ; Venugopal, K.R. ; Patnaik, L.M.</creator><creatorcontrib>Vibha, L. ; Harshavardhan, G.M. ; Pranaw, K. ; Shenoy, P.D. ; Venugopal, K.R. ; Patnaik, L.M.</creatorcontrib><description>A woman in general has 12% chance of developing breast cancer and a 3.5% chance of dying from this disease, hence detection of cancer has received considerable attention in the recent years. Mammogram is an X-ray of the breast used to detect and diagnose breast cancer and other abnormalities. The aim of a screening mammogram is to detect a tumor that cannot be physically detected. This paper proposes a Decision Forest Classifier (DFC) for classifying mammograms. Results of screening the mammograms are organised by classification and finally grouped into three categories i.e., Normal, Benign and malign. Experimental results obtained indicate that the proposed method performs relatively well with the classification accuracy reaching nearly 90.45% in comparison with the already existing algorithms.</description><identifier>ISBN: 9781424406111</identifier><identifier>ISBN: 1424406110</identifier><identifier>EISBN: 1424406129</identifier><identifier>EISBN: 9781424406128</identifier><identifier>DOI: 10.1109/ICISIP.2006.4286091</identifier><language>eng</language><publisher>IEEE</publisher><subject>Breast cancer ; Cancer detection ; classification ; Classification tree analysis ; Decision trees ; digital mammography ; Diseases ; Educational institutions ; Image databases ; image mining ; Mammography ; Medical imaging ; Microprocessors ; Neoplasms ; Random forest</subject><ispartof>2006 Fourth International Conference on Intelligent Sensing and Information Processing, 2006, p.178-183</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4286091$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4286091$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vibha, L.</creatorcontrib><creatorcontrib>Harshavardhan, G.M.</creatorcontrib><creatorcontrib>Pranaw, K.</creatorcontrib><creatorcontrib>Shenoy, P.D.</creatorcontrib><creatorcontrib>Venugopal, K.R.</creatorcontrib><creatorcontrib>Patnaik, L.M.</creatorcontrib><title>Statistical Classification of Mammograms Using Random Forest Classifier</title><title>2006 Fourth International Conference on Intelligent Sensing and Information Processing</title><addtitle>ICISIP</addtitle><description>A woman in general has 12% chance of developing breast cancer and a 3.5% chance of dying from this disease, hence detection of cancer has received considerable attention in the recent years. Mammogram is an X-ray of the breast used to detect and diagnose breast cancer and other abnormalities. The aim of a screening mammogram is to detect a tumor that cannot be physically detected. This paper proposes a Decision Forest Classifier (DFC) for classifying mammograms. Results of screening the mammograms are organised by classification and finally grouped into three categories i.e., Normal, Benign and malign. Experimental results obtained indicate that the proposed method performs relatively well with the classification accuracy reaching nearly 90.45% in comparison with the already existing algorithms.</description><subject>Breast cancer</subject><subject>Cancer detection</subject><subject>classification</subject><subject>Classification tree analysis</subject><subject>Decision trees</subject><subject>digital mammography</subject><subject>Diseases</subject><subject>Educational institutions</subject><subject>Image databases</subject><subject>image mining</subject><subject>Mammography</subject><subject>Medical imaging</subject><subject>Microprocessors</subject><subject>Neoplasms</subject><subject>Random forest</subject><isbn>9781424406111</isbn><isbn>1424406110</isbn><isbn>1424406129</isbn><isbn>9781424406128</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9j81OwzAQhI0QElDyBL34BVJ2bceJjyiiJVIRiNJztXHsyig_KPaFt6cSLXOZ-Q4z0jC2RFghgnls6mbXvK8EgF4pUWkweMXuUQmlQKMw1ywzZXVhxFuWxfgFJ0lTKCHu2GaXKIWYgqWe1z3FGPwppzCNfPL8lYZhOs40RL6PYTzyDxq7aeDraXYx_Rfc_MBuPPXRZWdfsP36-bN-ybdvm6Z-2uYByyLlrtCiLRBkS9p7i21JXnaGADphvPIOjSctK11I8LYFKZUqrPVKe0OVBblgy7_d4Jw7fM9hoPnncP4ufwEOWU4s</recordid><startdate>200612</startdate><enddate>200612</enddate><creator>Vibha, L.</creator><creator>Harshavardhan, G.M.</creator><creator>Pranaw, K.</creator><creator>Shenoy, P.D.</creator><creator>Venugopal, K.R.</creator><creator>Patnaik, L.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200612</creationdate><title>Statistical Classification of Mammograms Using Random Forest Classifier</title><author>Vibha, L. ; Harshavardhan, G.M. ; Pranaw, K. ; Shenoy, P.D. ; Venugopal, K.R. ; Patnaik, L.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-e562b5103ba6ffc1b7af3d9a00d29f4fe19fa6386530fcb033445ccf46f9a8c03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Breast cancer</topic><topic>Cancer detection</topic><topic>classification</topic><topic>Classification tree analysis</topic><topic>Decision trees</topic><topic>digital mammography</topic><topic>Diseases</topic><topic>Educational institutions</topic><topic>Image databases</topic><topic>image mining</topic><topic>Mammography</topic><topic>Medical imaging</topic><topic>Microprocessors</topic><topic>Neoplasms</topic><topic>Random forest</topic><toplevel>online_resources</toplevel><creatorcontrib>Vibha, L.</creatorcontrib><creatorcontrib>Harshavardhan, G.M.</creatorcontrib><creatorcontrib>Pranaw, K.</creatorcontrib><creatorcontrib>Shenoy, P.D.</creatorcontrib><creatorcontrib>Venugopal, K.R.</creatorcontrib><creatorcontrib>Patnaik, L.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vibha, L.</au><au>Harshavardhan, G.M.</au><au>Pranaw, K.</au><au>Shenoy, P.D.</au><au>Venugopal, K.R.</au><au>Patnaik, L.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Statistical Classification of Mammograms Using Random Forest Classifier</atitle><btitle>2006 Fourth International Conference on Intelligent Sensing and Information Processing</btitle><stitle>ICISIP</stitle><date>2006-12</date><risdate>2006</risdate><spage>178</spage><epage>183</epage><pages>178-183</pages><isbn>9781424406111</isbn><isbn>1424406110</isbn><eisbn>1424406129</eisbn><eisbn>9781424406128</eisbn><abstract>A woman in general has 12% chance of developing breast cancer and a 3.5% chance of dying from this disease, hence detection of cancer has received considerable attention in the recent years. Mammogram is an X-ray of the breast used to detect and diagnose breast cancer and other abnormalities. The aim of a screening mammogram is to detect a tumor that cannot be physically detected. This paper proposes a Decision Forest Classifier (DFC) for classifying mammograms. Results of screening the mammograms are organised by classification and finally grouped into three categories i.e., Normal, Benign and malign. Experimental results obtained indicate that the proposed method performs relatively well with the classification accuracy reaching nearly 90.45% in comparison with the already existing algorithms.</abstract><pub>IEEE</pub><doi>10.1109/ICISIP.2006.4286091</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424406111 |
ispartof | 2006 Fourth International Conference on Intelligent Sensing and Information Processing, 2006, p.178-183 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4286091 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Breast cancer Cancer detection classification Classification tree analysis Decision trees digital mammography Diseases Educational institutions Image databases image mining Mammography Medical imaging Microprocessors Neoplasms Random forest |
title | Statistical Classification of Mammograms Using Random Forest Classifier |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T07%3A11%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Statistical%20Classification%20of%20Mammograms%20Using%20Random%20Forest%20Classifier&rft.btitle=2006%20Fourth%20International%20Conference%20on%20Intelligent%20Sensing%20and%20Information%20Processing&rft.au=Vibha,%20L.&rft.date=2006-12&rft.spage=178&rft.epage=183&rft.pages=178-183&rft.isbn=9781424406111&rft.isbn_list=1424406110&rft_id=info:doi/10.1109/ICISIP.2006.4286091&rft_dat=%3Cieee_6IE%3E4286091%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424406129&rft.eisbn_list=9781424406128&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4286091&rfr_iscdi=true |