Statistical Classification of Mammograms Using Random Forest Classifier

A woman in general has 12% chance of developing breast cancer and a 3.5% chance of dying from this disease, hence detection of cancer has received considerable attention in the recent years. Mammogram is an X-ray of the breast used to detect and diagnose breast cancer and other abnormalities. The ai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Vibha, L., Harshavardhan, G.M., Pranaw, K., Shenoy, P.D., Venugopal, K.R., Patnaik, L.M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 183
container_issue
container_start_page 178
container_title
container_volume
creator Vibha, L.
Harshavardhan, G.M.
Pranaw, K.
Shenoy, P.D.
Venugopal, K.R.
Patnaik, L.M.
description A woman in general has 12% chance of developing breast cancer and a 3.5% chance of dying from this disease, hence detection of cancer has received considerable attention in the recent years. Mammogram is an X-ray of the breast used to detect and diagnose breast cancer and other abnormalities. The aim of a screening mammogram is to detect a tumor that cannot be physically detected. This paper proposes a Decision Forest Classifier (DFC) for classifying mammograms. Results of screening the mammograms are organised by classification and finally grouped into three categories i.e., Normal, Benign and malign. Experimental results obtained indicate that the proposed method performs relatively well with the classification accuracy reaching nearly 90.45% in comparison with the already existing algorithms.
doi_str_mv 10.1109/ICISIP.2006.4286091
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4286091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4286091</ieee_id><sourcerecordid>4286091</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-e562b5103ba6ffc1b7af3d9a00d29f4fe19fa6386530fcb033445ccf46f9a8c03</originalsourceid><addsrcrecordid>eNo9j81OwzAQhI0QElDyBL34BVJ2bceJjyiiJVIRiNJztXHsyig_KPaFt6cSLXOZ-Q4z0jC2RFghgnls6mbXvK8EgF4pUWkweMXuUQmlQKMw1ywzZXVhxFuWxfgFJ0lTKCHu2GaXKIWYgqWe1z3FGPwppzCNfPL8lYZhOs40RL6PYTzyDxq7aeDraXYx_Rfc_MBuPPXRZWdfsP36-bN-ybdvm6Z-2uYByyLlrtCiLRBkS9p7i21JXnaGADphvPIOjSctK11I8LYFKZUqrPVKe0OVBblgy7_d4Jw7fM9hoPnncP4ufwEOWU4s</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Statistical Classification of Mammograms Using Random Forest Classifier</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Vibha, L. ; Harshavardhan, G.M. ; Pranaw, K. ; Shenoy, P.D. ; Venugopal, K.R. ; Patnaik, L.M.</creator><creatorcontrib>Vibha, L. ; Harshavardhan, G.M. ; Pranaw, K. ; Shenoy, P.D. ; Venugopal, K.R. ; Patnaik, L.M.</creatorcontrib><description>A woman in general has 12% chance of developing breast cancer and a 3.5% chance of dying from this disease, hence detection of cancer has received considerable attention in the recent years. Mammogram is an X-ray of the breast used to detect and diagnose breast cancer and other abnormalities. The aim of a screening mammogram is to detect a tumor that cannot be physically detected. This paper proposes a Decision Forest Classifier (DFC) for classifying mammograms. Results of screening the mammograms are organised by classification and finally grouped into three categories i.e., Normal, Benign and malign. Experimental results obtained indicate that the proposed method performs relatively well with the classification accuracy reaching nearly 90.45% in comparison with the already existing algorithms.</description><identifier>ISBN: 9781424406111</identifier><identifier>ISBN: 1424406110</identifier><identifier>EISBN: 1424406129</identifier><identifier>EISBN: 9781424406128</identifier><identifier>DOI: 10.1109/ICISIP.2006.4286091</identifier><language>eng</language><publisher>IEEE</publisher><subject>Breast cancer ; Cancer detection ; classification ; Classification tree analysis ; Decision trees ; digital mammography ; Diseases ; Educational institutions ; Image databases ; image mining ; Mammography ; Medical imaging ; Microprocessors ; Neoplasms ; Random forest</subject><ispartof>2006 Fourth International Conference on Intelligent Sensing and Information Processing, 2006, p.178-183</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4286091$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4286091$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vibha, L.</creatorcontrib><creatorcontrib>Harshavardhan, G.M.</creatorcontrib><creatorcontrib>Pranaw, K.</creatorcontrib><creatorcontrib>Shenoy, P.D.</creatorcontrib><creatorcontrib>Venugopal, K.R.</creatorcontrib><creatorcontrib>Patnaik, L.M.</creatorcontrib><title>Statistical Classification of Mammograms Using Random Forest Classifier</title><title>2006 Fourth International Conference on Intelligent Sensing and Information Processing</title><addtitle>ICISIP</addtitle><description>A woman in general has 12% chance of developing breast cancer and a 3.5% chance of dying from this disease, hence detection of cancer has received considerable attention in the recent years. Mammogram is an X-ray of the breast used to detect and diagnose breast cancer and other abnormalities. The aim of a screening mammogram is to detect a tumor that cannot be physically detected. This paper proposes a Decision Forest Classifier (DFC) for classifying mammograms. Results of screening the mammograms are organised by classification and finally grouped into three categories i.e., Normal, Benign and malign. Experimental results obtained indicate that the proposed method performs relatively well with the classification accuracy reaching nearly 90.45% in comparison with the already existing algorithms.</description><subject>Breast cancer</subject><subject>Cancer detection</subject><subject>classification</subject><subject>Classification tree analysis</subject><subject>Decision trees</subject><subject>digital mammography</subject><subject>Diseases</subject><subject>Educational institutions</subject><subject>Image databases</subject><subject>image mining</subject><subject>Mammography</subject><subject>Medical imaging</subject><subject>Microprocessors</subject><subject>Neoplasms</subject><subject>Random forest</subject><isbn>9781424406111</isbn><isbn>1424406110</isbn><isbn>1424406129</isbn><isbn>9781424406128</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9j81OwzAQhI0QElDyBL34BVJ2bceJjyiiJVIRiNJztXHsyig_KPaFt6cSLXOZ-Q4z0jC2RFghgnls6mbXvK8EgF4pUWkweMXuUQmlQKMw1ywzZXVhxFuWxfgFJ0lTKCHu2GaXKIWYgqWe1z3FGPwppzCNfPL8lYZhOs40RL6PYTzyDxq7aeDraXYx_Rfc_MBuPPXRZWdfsP36-bN-ybdvm6Z-2uYByyLlrtCiLRBkS9p7i21JXnaGADphvPIOjSctK11I8LYFKZUqrPVKe0OVBblgy7_d4Jw7fM9hoPnncP4ufwEOWU4s</recordid><startdate>200612</startdate><enddate>200612</enddate><creator>Vibha, L.</creator><creator>Harshavardhan, G.M.</creator><creator>Pranaw, K.</creator><creator>Shenoy, P.D.</creator><creator>Venugopal, K.R.</creator><creator>Patnaik, L.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200612</creationdate><title>Statistical Classification of Mammograms Using Random Forest Classifier</title><author>Vibha, L. ; Harshavardhan, G.M. ; Pranaw, K. ; Shenoy, P.D. ; Venugopal, K.R. ; Patnaik, L.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-e562b5103ba6ffc1b7af3d9a00d29f4fe19fa6386530fcb033445ccf46f9a8c03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Breast cancer</topic><topic>Cancer detection</topic><topic>classification</topic><topic>Classification tree analysis</topic><topic>Decision trees</topic><topic>digital mammography</topic><topic>Diseases</topic><topic>Educational institutions</topic><topic>Image databases</topic><topic>image mining</topic><topic>Mammography</topic><topic>Medical imaging</topic><topic>Microprocessors</topic><topic>Neoplasms</topic><topic>Random forest</topic><toplevel>online_resources</toplevel><creatorcontrib>Vibha, L.</creatorcontrib><creatorcontrib>Harshavardhan, G.M.</creatorcontrib><creatorcontrib>Pranaw, K.</creatorcontrib><creatorcontrib>Shenoy, P.D.</creatorcontrib><creatorcontrib>Venugopal, K.R.</creatorcontrib><creatorcontrib>Patnaik, L.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vibha, L.</au><au>Harshavardhan, G.M.</au><au>Pranaw, K.</au><au>Shenoy, P.D.</au><au>Venugopal, K.R.</au><au>Patnaik, L.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Statistical Classification of Mammograms Using Random Forest Classifier</atitle><btitle>2006 Fourth International Conference on Intelligent Sensing and Information Processing</btitle><stitle>ICISIP</stitle><date>2006-12</date><risdate>2006</risdate><spage>178</spage><epage>183</epage><pages>178-183</pages><isbn>9781424406111</isbn><isbn>1424406110</isbn><eisbn>1424406129</eisbn><eisbn>9781424406128</eisbn><abstract>A woman in general has 12% chance of developing breast cancer and a 3.5% chance of dying from this disease, hence detection of cancer has received considerable attention in the recent years. Mammogram is an X-ray of the breast used to detect and diagnose breast cancer and other abnormalities. The aim of a screening mammogram is to detect a tumor that cannot be physically detected. This paper proposes a Decision Forest Classifier (DFC) for classifying mammograms. Results of screening the mammograms are organised by classification and finally grouped into three categories i.e., Normal, Benign and malign. Experimental results obtained indicate that the proposed method performs relatively well with the classification accuracy reaching nearly 90.45% in comparison with the already existing algorithms.</abstract><pub>IEEE</pub><doi>10.1109/ICISIP.2006.4286091</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424406111
ispartof 2006 Fourth International Conference on Intelligent Sensing and Information Processing, 2006, p.178-183
issn
language eng
recordid cdi_ieee_primary_4286091
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Breast cancer
Cancer detection
classification
Classification tree analysis
Decision trees
digital mammography
Diseases
Educational institutions
Image databases
image mining
Mammography
Medical imaging
Microprocessors
Neoplasms
Random forest
title Statistical Classification of Mammograms Using Random Forest Classifier
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T07%3A11%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Statistical%20Classification%20of%20Mammograms%20Using%20Random%20Forest%20Classifier&rft.btitle=2006%20Fourth%20International%20Conference%20on%20Intelligent%20Sensing%20and%20Information%20Processing&rft.au=Vibha,%20L.&rft.date=2006-12&rft.spage=178&rft.epage=183&rft.pages=178-183&rft.isbn=9781424406111&rft.isbn_list=1424406110&rft_id=info:doi/10.1109/ICISIP.2006.4286091&rft_dat=%3Cieee_6IE%3E4286091%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424406129&rft.eisbn_list=9781424406128&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4286091&rfr_iscdi=true