Reinforcement Learning based Output-Feedback Control of Nonlinear Nonstrict Feedback Discrete-time Systems with Application to Engines
A novel reinforcement-learning based output-adaptive neural network (NN) controller, also referred as the adaptive-critic NN controller, is developed to track a desired trajectory for a class of complex nonlinear discrete-time systems in the presence of bounded and unknown disturbances. The controll...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5111 |
---|---|
container_issue | |
container_start_page | 5106 |
container_title | |
container_volume | |
creator | Shih, P. Vance, J. Kaul, B. Jagannathan, S. Drallmeier, J.A. |
description | A novel reinforcement-learning based output-adaptive neural network (NN) controller, also referred as the adaptive-critic NN controller, is developed to track a desired trajectory for a class of complex nonlinear discrete-time systems in the presence of bounded and unknown disturbances. The controller includes an observer for estimating states and the outputs, critic, and two action NNs for generating virtual, and actual control inputs. The critic approximates certain strategic utility function and the action NNs are used to minimize both the strategic utility function and their outputs. All NN weights adapt online towards minimization of a performance index, utilizing gradient-descent based rule. A Lyapunov function proves the uniformly ultimate boundedness (UUB) of the closed-loop tracking error, weight, and observer estimation. Separation principle and certainty equivalence principles are relaxed; persistency of excitation condition and linear in the unknown parameter assumption is not needed. The performance of this adaptive critic NN controller is evaluated through simulation with the Daw engine model in lean mode. The objective is to reduce the cyclic dispersion in heat release by using the controller. |
doi_str_mv | 10.1109/ACC.2007.4283127 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4283127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4283127</ieee_id><sourcerecordid>4283127</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-7fa28a36f5d6a63b64f5698db5e5fd9da23ade85d5825bd8970da1de48a6d4183</originalsourceid><addsrcrecordid>eNo9kMtOwzAURM1Loi3dI7HxD6T4HXtZhRaQKipB95UT3xRD4kSxK9Qf4LsBUVjNSHN0FoPQNSUzSom5nRfFjBGSzwTTnLL8BI2pYEIQo406RSPGc51JregZmppc_21anKMRyQXPqKLmEo1jfCOEGqPICH0-gw91N1TQQkh4BXYIPuxwaSM4vN6nfp-yJYArbfWOiy6koWtwV-OnLjQ-fOM_LabBVwn_c3c-VgMkyJJvAb8cYoI24g-fXvG87xtf2eS7gFOHF2H3bYlX6KK2TYTpMSdos1xsiodstb5_LOarzBuSsry2TFuuaumUVbxUopbKaFdKkLUzzjJuHWjppGaydNrkxFnqQGirnKCaT9DNr9YDwLYffGuHw_Z4J_8CXBdn2A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Reinforcement Learning based Output-Feedback Control of Nonlinear Nonstrict Feedback Discrete-time Systems with Application to Engines</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Shih, P. ; Vance, J. ; Kaul, B. ; Jagannathan, S. ; Drallmeier, J.A.</creator><creatorcontrib>Shih, P. ; Vance, J. ; Kaul, B. ; Jagannathan, S. ; Drallmeier, J.A.</creatorcontrib><description>A novel reinforcement-learning based output-adaptive neural network (NN) controller, also referred as the adaptive-critic NN controller, is developed to track a desired trajectory for a class of complex nonlinear discrete-time systems in the presence of bounded and unknown disturbances. The controller includes an observer for estimating states and the outputs, critic, and two action NNs for generating virtual, and actual control inputs. The critic approximates certain strategic utility function and the action NNs are used to minimize both the strategic utility function and their outputs. All NN weights adapt online towards minimization of a performance index, utilizing gradient-descent based rule. A Lyapunov function proves the uniformly ultimate boundedness (UUB) of the closed-loop tracking error, weight, and observer estimation. Separation principle and certainty equivalence principles are relaxed; persistency of excitation condition and linear in the unknown parameter assumption is not needed. The performance of this adaptive critic NN controller is evaluated through simulation with the Daw engine model in lean mode. The objective is to reduce the cyclic dispersion in heat release by using the controller.</description><identifier>ISSN: 0743-1619</identifier><identifier>ISBN: 9781424409884</identifier><identifier>ISBN: 1424409888</identifier><identifier>EISSN: 2378-5861</identifier><identifier>EISBN: 1424409896</identifier><identifier>EISBN: 9781424409891</identifier><identifier>DOI: 10.1109/ACC.2007.4283127</identifier><language>eng</language><publisher>IEEE</publisher><subject>Control systems ; Engines ; Learning ; Neural networks ; Neurofeedback ; Nonlinear control systems ; Observers ; Output feedback ; State estimation ; Trajectory</subject><ispartof>2007 American Control Conference, 2007, p.5106-5111</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4283127$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27930,54925</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4283127$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shih, P.</creatorcontrib><creatorcontrib>Vance, J.</creatorcontrib><creatorcontrib>Kaul, B.</creatorcontrib><creatorcontrib>Jagannathan, S.</creatorcontrib><creatorcontrib>Drallmeier, J.A.</creatorcontrib><title>Reinforcement Learning based Output-Feedback Control of Nonlinear Nonstrict Feedback Discrete-time Systems with Application to Engines</title><title>2007 American Control Conference</title><addtitle>ACC</addtitle><description>A novel reinforcement-learning based output-adaptive neural network (NN) controller, also referred as the adaptive-critic NN controller, is developed to track a desired trajectory for a class of complex nonlinear discrete-time systems in the presence of bounded and unknown disturbances. The controller includes an observer for estimating states and the outputs, critic, and two action NNs for generating virtual, and actual control inputs. The critic approximates certain strategic utility function and the action NNs are used to minimize both the strategic utility function and their outputs. All NN weights adapt online towards minimization of a performance index, utilizing gradient-descent based rule. A Lyapunov function proves the uniformly ultimate boundedness (UUB) of the closed-loop tracking error, weight, and observer estimation. Separation principle and certainty equivalence principles are relaxed; persistency of excitation condition and linear in the unknown parameter assumption is not needed. The performance of this adaptive critic NN controller is evaluated through simulation with the Daw engine model in lean mode. The objective is to reduce the cyclic dispersion in heat release by using the controller.</description><subject>Control systems</subject><subject>Engines</subject><subject>Learning</subject><subject>Neural networks</subject><subject>Neurofeedback</subject><subject>Nonlinear control systems</subject><subject>Observers</subject><subject>Output feedback</subject><subject>State estimation</subject><subject>Trajectory</subject><issn>0743-1619</issn><issn>2378-5861</issn><isbn>9781424409884</isbn><isbn>1424409888</isbn><isbn>1424409896</isbn><isbn>9781424409891</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAURM1Loi3dI7HxD6T4HXtZhRaQKipB95UT3xRD4kSxK9Qf4LsBUVjNSHN0FoPQNSUzSom5nRfFjBGSzwTTnLL8BI2pYEIQo406RSPGc51JregZmppc_21anKMRyQXPqKLmEo1jfCOEGqPICH0-gw91N1TQQkh4BXYIPuxwaSM4vN6nfp-yJYArbfWOiy6koWtwV-OnLjQ-fOM_LabBVwn_c3c-VgMkyJJvAb8cYoI24g-fXvG87xtf2eS7gFOHF2H3bYlX6KK2TYTpMSdos1xsiodstb5_LOarzBuSsry2TFuuaumUVbxUopbKaFdKkLUzzjJuHWjppGaydNrkxFnqQGirnKCaT9DNr9YDwLYffGuHw_Z4J_8CXBdn2A</recordid><startdate>200707</startdate><enddate>200707</enddate><creator>Shih, P.</creator><creator>Vance, J.</creator><creator>Kaul, B.</creator><creator>Jagannathan, S.</creator><creator>Drallmeier, J.A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200707</creationdate><title>Reinforcement Learning based Output-Feedback Control of Nonlinear Nonstrict Feedback Discrete-time Systems with Application to Engines</title><author>Shih, P. ; Vance, J. ; Kaul, B. ; Jagannathan, S. ; Drallmeier, J.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-7fa28a36f5d6a63b64f5698db5e5fd9da23ade85d5825bd8970da1de48a6d4183</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Control systems</topic><topic>Engines</topic><topic>Learning</topic><topic>Neural networks</topic><topic>Neurofeedback</topic><topic>Nonlinear control systems</topic><topic>Observers</topic><topic>Output feedback</topic><topic>State estimation</topic><topic>Trajectory</topic><toplevel>online_resources</toplevel><creatorcontrib>Shih, P.</creatorcontrib><creatorcontrib>Vance, J.</creatorcontrib><creatorcontrib>Kaul, B.</creatorcontrib><creatorcontrib>Jagannathan, S.</creatorcontrib><creatorcontrib>Drallmeier, J.A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shih, P.</au><au>Vance, J.</au><au>Kaul, B.</au><au>Jagannathan, S.</au><au>Drallmeier, J.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Reinforcement Learning based Output-Feedback Control of Nonlinear Nonstrict Feedback Discrete-time Systems with Application to Engines</atitle><btitle>2007 American Control Conference</btitle><stitle>ACC</stitle><date>2007-07</date><risdate>2007</risdate><spage>5106</spage><epage>5111</epage><pages>5106-5111</pages><issn>0743-1619</issn><eissn>2378-5861</eissn><isbn>9781424409884</isbn><isbn>1424409888</isbn><eisbn>1424409896</eisbn><eisbn>9781424409891</eisbn><abstract>A novel reinforcement-learning based output-adaptive neural network (NN) controller, also referred as the adaptive-critic NN controller, is developed to track a desired trajectory for a class of complex nonlinear discrete-time systems in the presence of bounded and unknown disturbances. The controller includes an observer for estimating states and the outputs, critic, and two action NNs for generating virtual, and actual control inputs. The critic approximates certain strategic utility function and the action NNs are used to minimize both the strategic utility function and their outputs. All NN weights adapt online towards minimization of a performance index, utilizing gradient-descent based rule. A Lyapunov function proves the uniformly ultimate boundedness (UUB) of the closed-loop tracking error, weight, and observer estimation. Separation principle and certainty equivalence principles are relaxed; persistency of excitation condition and linear in the unknown parameter assumption is not needed. The performance of this adaptive critic NN controller is evaluated through simulation with the Daw engine model in lean mode. The objective is to reduce the cyclic dispersion in heat release by using the controller.</abstract><pub>IEEE</pub><doi>10.1109/ACC.2007.4283127</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0743-1619 |
ispartof | 2007 American Control Conference, 2007, p.5106-5111 |
issn | 0743-1619 2378-5861 |
language | eng |
recordid | cdi_ieee_primary_4283127 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Control systems Engines Learning Neural networks Neurofeedback Nonlinear control systems Observers Output feedback State estimation Trajectory |
title | Reinforcement Learning based Output-Feedback Control of Nonlinear Nonstrict Feedback Discrete-time Systems with Application to Engines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T08%3A13%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Reinforcement%20Learning%20based%20Output-Feedback%20Control%20of%20Nonlinear%20Nonstrict%20Feedback%20Discrete-time%20Systems%20with%20Application%20to%20Engines&rft.btitle=2007%20American%20Control%20Conference&rft.au=Shih,%20P.&rft.date=2007-07&rft.spage=5106&rft.epage=5111&rft.pages=5106-5111&rft.issn=0743-1619&rft.eissn=2378-5861&rft.isbn=9781424409884&rft.isbn_list=1424409888&rft_id=info:doi/10.1109/ACC.2007.4283127&rft_dat=%3Cieee_6IE%3E4283127%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424409896&rft.eisbn_list=9781424409891&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4283127&rfr_iscdi=true |