A Generalized Autocovariance Least-Squares Method for Covariance Estimation

A generalization of the autocovariance least- squares method for estimating noise covariances is presented. The method can estimate mutually correlated system and sensor noise and can be used with both the predicting and the filtering form of the Kalman filter.

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Akesson, Bernt M., Jorgensen, John Bagterp, Jorgensen, Sten Bay
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3714
container_issue
container_start_page 3713
container_title
container_volume
creator Akesson, Bernt M.
Jorgensen, John Bagterp
Jorgensen, Sten Bay
description A generalization of the autocovariance least- squares method for estimating noise covariances is presented. The method can estimate mutually correlated system and sensor noise and can be used with both the predicting and the filtering form of the Kalman filter.
doi_str_mv 10.1109/ACC.2007.4282878
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4282878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4282878</ieee_id><sourcerecordid>4282878</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1328-88a062c853675b38a3293310790d2c0b065c0ba0bdb1caffcdc5446bbae0d2603</originalsourceid><addsrcrecordid>eNpFkE1Lw0AYhNcvMK29C17yB7a--5Hdd48htFWMeFDPZbN5gys10SQV9NcbsOJl5jAPMzCMXQpYCgHuOi-KpQSwSy1RosUjNhNaag0OnTlmiVQWeYZGnLCFs_iXoT5lCVituDDCnbPZMLwCCOcMJOwuTzfUUu938ZvqNN-PXeg-fR99GygtyQ8jf_zY-56G9J7Gl65Om65Pi39mNYzxzY-xay_YWeN3Ay0OPmfP69VTccPLh81tkZc8CiWRI3owMmCmjM0qhV5Jp5QA66CWASow2aQeqroSwTdNqEOmtakqTxNgQM3Z1W9vJKLtez_N91_bwynqB6zDUP0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Generalized Autocovariance Least-Squares Method for Covariance Estimation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Akesson, Bernt M. ; Jorgensen, John Bagterp ; Jorgensen, Sten Bay</creator><creatorcontrib>Akesson, Bernt M. ; Jorgensen, John Bagterp ; Jorgensen, Sten Bay</creatorcontrib><description>A generalization of the autocovariance least- squares method for estimating noise covariances is presented. The method can estimate mutually correlated system and sensor noise and can be used with both the predicting and the filtering form of the Kalman filter.</description><identifier>ISSN: 0743-1619</identifier><identifier>ISBN: 9781424409884</identifier><identifier>ISBN: 1424409888</identifier><identifier>EISSN: 2378-5861</identifier><identifier>EISBN: 1424409896</identifier><identifier>EISBN: 9781424409891</identifier><identifier>DOI: 10.1109/ACC.2007.4282878</identifier><language>eng</language><publisher>IEEE</publisher><subject>Chemical engineering ; Chemical sensors ; Cities and towns ; Covariance estimation ; Filtering ; Filters ; Informatics ; Mathematical model ; optimal estimation ; Riccati equations ; Sensor systems ; State estimation</subject><ispartof>2007 American Control Conference, 2007, p.3713-3714</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4282878$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4282878$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Akesson, Bernt M.</creatorcontrib><creatorcontrib>Jorgensen, John Bagterp</creatorcontrib><creatorcontrib>Jorgensen, Sten Bay</creatorcontrib><title>A Generalized Autocovariance Least-Squares Method for Covariance Estimation</title><title>2007 American Control Conference</title><addtitle>ACC</addtitle><description>A generalization of the autocovariance least- squares method for estimating noise covariances is presented. The method can estimate mutually correlated system and sensor noise and can be used with both the predicting and the filtering form of the Kalman filter.</description><subject>Chemical engineering</subject><subject>Chemical sensors</subject><subject>Cities and towns</subject><subject>Covariance estimation</subject><subject>Filtering</subject><subject>Filters</subject><subject>Informatics</subject><subject>Mathematical model</subject><subject>optimal estimation</subject><subject>Riccati equations</subject><subject>Sensor systems</subject><subject>State estimation</subject><issn>0743-1619</issn><issn>2378-5861</issn><isbn>9781424409884</isbn><isbn>1424409888</isbn><isbn>1424409896</isbn><isbn>9781424409891</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkE1Lw0AYhNcvMK29C17yB7a--5Hdd48htFWMeFDPZbN5gys10SQV9NcbsOJl5jAPMzCMXQpYCgHuOi-KpQSwSy1RosUjNhNaag0OnTlmiVQWeYZGnLCFs_iXoT5lCVituDDCnbPZMLwCCOcMJOwuTzfUUu938ZvqNN-PXeg-fR99GygtyQ8jf_zY-56G9J7Gl65Om65Pi39mNYzxzY-xay_YWeN3Ay0OPmfP69VTccPLh81tkZc8CiWRI3owMmCmjM0qhV5Jp5QA66CWASow2aQeqroSwTdNqEOmtakqTxNgQM3Z1W9vJKLtez_N91_bwynqB6zDUP0</recordid><startdate>200707</startdate><enddate>200707</enddate><creator>Akesson, Bernt M.</creator><creator>Jorgensen, John Bagterp</creator><creator>Jorgensen, Sten Bay</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200707</creationdate><title>A Generalized Autocovariance Least-Squares Method for Covariance Estimation</title><author>Akesson, Bernt M. ; Jorgensen, John Bagterp ; Jorgensen, Sten Bay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1328-88a062c853675b38a3293310790d2c0b065c0ba0bdb1caffcdc5446bbae0d2603</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Chemical engineering</topic><topic>Chemical sensors</topic><topic>Cities and towns</topic><topic>Covariance estimation</topic><topic>Filtering</topic><topic>Filters</topic><topic>Informatics</topic><topic>Mathematical model</topic><topic>optimal estimation</topic><topic>Riccati equations</topic><topic>Sensor systems</topic><topic>State estimation</topic><toplevel>online_resources</toplevel><creatorcontrib>Akesson, Bernt M.</creatorcontrib><creatorcontrib>Jorgensen, John Bagterp</creatorcontrib><creatorcontrib>Jorgensen, Sten Bay</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Akesson, Bernt M.</au><au>Jorgensen, John Bagterp</au><au>Jorgensen, Sten Bay</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Generalized Autocovariance Least-Squares Method for Covariance Estimation</atitle><btitle>2007 American Control Conference</btitle><stitle>ACC</stitle><date>2007-07</date><risdate>2007</risdate><spage>3713</spage><epage>3714</epage><pages>3713-3714</pages><issn>0743-1619</issn><eissn>2378-5861</eissn><isbn>9781424409884</isbn><isbn>1424409888</isbn><eisbn>1424409896</eisbn><eisbn>9781424409891</eisbn><abstract>A generalization of the autocovariance least- squares method for estimating noise covariances is presented. The method can estimate mutually correlated system and sensor noise and can be used with both the predicting and the filtering form of the Kalman filter.</abstract><pub>IEEE</pub><doi>10.1109/ACC.2007.4282878</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0743-1619
ispartof 2007 American Control Conference, 2007, p.3713-3714
issn 0743-1619
2378-5861
language eng
recordid cdi_ieee_primary_4282878
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Chemical engineering
Chemical sensors
Cities and towns
Covariance estimation
Filtering
Filters
Informatics
Mathematical model
optimal estimation
Riccati equations
Sensor systems
State estimation
title A Generalized Autocovariance Least-Squares Method for Covariance Estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A20%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Generalized%20Autocovariance%20Least-Squares%20Method%20for%20Covariance%20Estimation&rft.btitle=2007%20American%20Control%20Conference&rft.au=Akesson,%20Bernt%20M.&rft.date=2007-07&rft.spage=3713&rft.epage=3714&rft.pages=3713-3714&rft.issn=0743-1619&rft.eissn=2378-5861&rft.isbn=9781424409884&rft.isbn_list=1424409888&rft_id=info:doi/10.1109/ACC.2007.4282878&rft_dat=%3Cieee_6IE%3E4282878%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424409896&rft.eisbn_list=9781424409891&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4282878&rfr_iscdi=true