A Generalized Autocovariance Least-Squares Method for Covariance Estimation
A generalization of the autocovariance least- squares method for estimating noise covariances is presented. The method can estimate mutually correlated system and sensor noise and can be used with both the predicting and the filtering form of the Kalman filter.
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3714 |
---|---|
container_issue | |
container_start_page | 3713 |
container_title | |
container_volume | |
creator | Akesson, Bernt M. Jorgensen, John Bagterp Jorgensen, Sten Bay |
description | A generalization of the autocovariance least- squares method for estimating noise covariances is presented. The method can estimate mutually correlated system and sensor noise and can be used with both the predicting and the filtering form of the Kalman filter. |
doi_str_mv | 10.1109/ACC.2007.4282878 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4282878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4282878</ieee_id><sourcerecordid>4282878</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1328-88a062c853675b38a3293310790d2c0b065c0ba0bdb1caffcdc5446bbae0d2603</originalsourceid><addsrcrecordid>eNpFkE1Lw0AYhNcvMK29C17yB7a--5Hdd48htFWMeFDPZbN5gys10SQV9NcbsOJl5jAPMzCMXQpYCgHuOi-KpQSwSy1RosUjNhNaag0OnTlmiVQWeYZGnLCFs_iXoT5lCVituDDCnbPZMLwCCOcMJOwuTzfUUu938ZvqNN-PXeg-fR99GygtyQ8jf_zY-56G9J7Gl65Om65Pi39mNYzxzY-xay_YWeN3Ay0OPmfP69VTccPLh81tkZc8CiWRI3owMmCmjM0qhV5Jp5QA66CWASow2aQeqroSwTdNqEOmtakqTxNgQM3Z1W9vJKLtez_N91_bwynqB6zDUP0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Generalized Autocovariance Least-Squares Method for Covariance Estimation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Akesson, Bernt M. ; Jorgensen, John Bagterp ; Jorgensen, Sten Bay</creator><creatorcontrib>Akesson, Bernt M. ; Jorgensen, John Bagterp ; Jorgensen, Sten Bay</creatorcontrib><description>A generalization of the autocovariance least- squares method for estimating noise covariances is presented. The method can estimate mutually correlated system and sensor noise and can be used with both the predicting and the filtering form of the Kalman filter.</description><identifier>ISSN: 0743-1619</identifier><identifier>ISBN: 9781424409884</identifier><identifier>ISBN: 1424409888</identifier><identifier>EISSN: 2378-5861</identifier><identifier>EISBN: 1424409896</identifier><identifier>EISBN: 9781424409891</identifier><identifier>DOI: 10.1109/ACC.2007.4282878</identifier><language>eng</language><publisher>IEEE</publisher><subject>Chemical engineering ; Chemical sensors ; Cities and towns ; Covariance estimation ; Filtering ; Filters ; Informatics ; Mathematical model ; optimal estimation ; Riccati equations ; Sensor systems ; State estimation</subject><ispartof>2007 American Control Conference, 2007, p.3713-3714</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4282878$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4282878$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Akesson, Bernt M.</creatorcontrib><creatorcontrib>Jorgensen, John Bagterp</creatorcontrib><creatorcontrib>Jorgensen, Sten Bay</creatorcontrib><title>A Generalized Autocovariance Least-Squares Method for Covariance Estimation</title><title>2007 American Control Conference</title><addtitle>ACC</addtitle><description>A generalization of the autocovariance least- squares method for estimating noise covariances is presented. The method can estimate mutually correlated system and sensor noise and can be used with both the predicting and the filtering form of the Kalman filter.</description><subject>Chemical engineering</subject><subject>Chemical sensors</subject><subject>Cities and towns</subject><subject>Covariance estimation</subject><subject>Filtering</subject><subject>Filters</subject><subject>Informatics</subject><subject>Mathematical model</subject><subject>optimal estimation</subject><subject>Riccati equations</subject><subject>Sensor systems</subject><subject>State estimation</subject><issn>0743-1619</issn><issn>2378-5861</issn><isbn>9781424409884</isbn><isbn>1424409888</isbn><isbn>1424409896</isbn><isbn>9781424409891</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkE1Lw0AYhNcvMK29C17yB7a--5Hdd48htFWMeFDPZbN5gys10SQV9NcbsOJl5jAPMzCMXQpYCgHuOi-KpQSwSy1RosUjNhNaag0OnTlmiVQWeYZGnLCFs_iXoT5lCVituDDCnbPZMLwCCOcMJOwuTzfUUu938ZvqNN-PXeg-fR99GygtyQ8jf_zY-56G9J7Gl65Om65Pi39mNYzxzY-xay_YWeN3Ay0OPmfP69VTccPLh81tkZc8CiWRI3owMmCmjM0qhV5Jp5QA66CWASow2aQeqroSwTdNqEOmtakqTxNgQM3Z1W9vJKLtez_N91_bwynqB6zDUP0</recordid><startdate>200707</startdate><enddate>200707</enddate><creator>Akesson, Bernt M.</creator><creator>Jorgensen, John Bagterp</creator><creator>Jorgensen, Sten Bay</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200707</creationdate><title>A Generalized Autocovariance Least-Squares Method for Covariance Estimation</title><author>Akesson, Bernt M. ; Jorgensen, John Bagterp ; Jorgensen, Sten Bay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1328-88a062c853675b38a3293310790d2c0b065c0ba0bdb1caffcdc5446bbae0d2603</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Chemical engineering</topic><topic>Chemical sensors</topic><topic>Cities and towns</topic><topic>Covariance estimation</topic><topic>Filtering</topic><topic>Filters</topic><topic>Informatics</topic><topic>Mathematical model</topic><topic>optimal estimation</topic><topic>Riccati equations</topic><topic>Sensor systems</topic><topic>State estimation</topic><toplevel>online_resources</toplevel><creatorcontrib>Akesson, Bernt M.</creatorcontrib><creatorcontrib>Jorgensen, John Bagterp</creatorcontrib><creatorcontrib>Jorgensen, Sten Bay</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Akesson, Bernt M.</au><au>Jorgensen, John Bagterp</au><au>Jorgensen, Sten Bay</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Generalized Autocovariance Least-Squares Method for Covariance Estimation</atitle><btitle>2007 American Control Conference</btitle><stitle>ACC</stitle><date>2007-07</date><risdate>2007</risdate><spage>3713</spage><epage>3714</epage><pages>3713-3714</pages><issn>0743-1619</issn><eissn>2378-5861</eissn><isbn>9781424409884</isbn><isbn>1424409888</isbn><eisbn>1424409896</eisbn><eisbn>9781424409891</eisbn><abstract>A generalization of the autocovariance least- squares method for estimating noise covariances is presented. The method can estimate mutually correlated system and sensor noise and can be used with both the predicting and the filtering form of the Kalman filter.</abstract><pub>IEEE</pub><doi>10.1109/ACC.2007.4282878</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0743-1619 |
ispartof | 2007 American Control Conference, 2007, p.3713-3714 |
issn | 0743-1619 2378-5861 |
language | eng |
recordid | cdi_ieee_primary_4282878 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Chemical engineering Chemical sensors Cities and towns Covariance estimation Filtering Filters Informatics Mathematical model optimal estimation Riccati equations Sensor systems State estimation |
title | A Generalized Autocovariance Least-Squares Method for Covariance Estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A20%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Generalized%20Autocovariance%20Least-Squares%20Method%20for%20Covariance%20Estimation&rft.btitle=2007%20American%20Control%20Conference&rft.au=Akesson,%20Bernt%20M.&rft.date=2007-07&rft.spage=3713&rft.epage=3714&rft.pages=3713-3714&rft.issn=0743-1619&rft.eissn=2378-5861&rft.isbn=9781424409884&rft.isbn_list=1424409888&rft_id=info:doi/10.1109/ACC.2007.4282878&rft_dat=%3Cieee_6IE%3E4282878%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424409896&rft.eisbn_list=9781424409891&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4282878&rfr_iscdi=true |