Moving Horizon Estimation and Control for an Industrial Gas Phase Polymerization Reactor
Moving horizon estimation (MHE) has been applied to an industrial gas phase polymerization reactor to improve estimates of current states and parameters. MHE is compared to implicit dynamic feedback (IDFtrade). With MHE, there is improved estimation of unmodeled disturbances in the UNIPOLtrade polye...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1358 |
---|---|
container_issue | |
container_start_page | 1353 |
container_title | |
container_volume | |
creator | Hedengren, J.D. Allsford, K.V. Ramlal, J. |
description | Moving horizon estimation (MHE) has been applied to an industrial gas phase polymerization reactor to improve estimates of current states and parameters. MHE is compared to implicit dynamic feedback (IDFtrade). With MHE, there is improved estimation of unmodeled disturbances in the UNIPOLtrade polyethylene plant. The UNIPOLtrade technology is licensed by Univation, a joint venture between ExxonMobil and Dow. The polymerization reactor and plant model is a large-scale set of differential and algebraic equations (DAEs) posed in open equation form. The DAE model is converted to algebraic equations by orthogonal collocation and solved with the MHE objective function in a simultaneous optimization. NOVAtrade, an active-set sparse NLP solver, is used to converge the problem that has 46,870 variables, 18 complementarity conditions, and a Jacobian sparsity of 0.01%. This large, sparse optimization problem is initiated every 5 minutes to update the model as new plant measurements become available and prior to the control optimization. The same plant model is used for nonlinear model predictive control (MPC) with 10 manipulated variables (MVs) and 26 controlled variables (CVs). In this case, a significant advantage is that with MHE a simpler rigorous model suffices for the application of nonlinear MPC. |
doi_str_mv | 10.1109/ACC.2007.4282820 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4282820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4282820</ieee_id><sourcerecordid>4282820</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1320-76107a843f1a3c9856f89bd54345e314f8aaf508b8b413be003f8bea8cfa4743</originalsourceid><addsrcrecordid>eNo1UMtqwzAQVF_QJM290It-wO6uJdurYzBpEkhpKDn0FuRYalUcq0huIf36GpKyh51hmWFmGbtHSBFBPc6qKs0AylRmNAxcsDHKTEpQpIpLNspESUlOBV6xqSrp_0bymo2glCLBAtUtG8f4CYBKFTBib8_-x3XvfOmD-_Udn8feHXTvBqi7hle-64NvufVh4HzVNd-xD063fKEj33zoaPjGt8eDGeQn2avR-96HO3ZjdRvN9LwnbPs031bLZP2yWFWzdeJQZJCUBUKpSQqLWuwV5YUlVTe5FDI3AqUlrW0OVFMtUdQGQFiqjaa91XLoNGEPJ1tnjNl9hSF8OO7ODxJ_SrBVXA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Moving Horizon Estimation and Control for an Industrial Gas Phase Polymerization Reactor</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hedengren, J.D. ; Allsford, K.V. ; Ramlal, J.</creator><creatorcontrib>Hedengren, J.D. ; Allsford, K.V. ; Ramlal, J.</creatorcontrib><description>Moving horizon estimation (MHE) has been applied to an industrial gas phase polymerization reactor to improve estimates of current states and parameters. MHE is compared to implicit dynamic feedback (IDFtrade). With MHE, there is improved estimation of unmodeled disturbances in the UNIPOLtrade polyethylene plant. The UNIPOLtrade technology is licensed by Univation, a joint venture between ExxonMobil and Dow. The polymerization reactor and plant model is a large-scale set of differential and algebraic equations (DAEs) posed in open equation form. The DAE model is converted to algebraic equations by orthogonal collocation and solved with the MHE objective function in a simultaneous optimization. NOVAtrade, an active-set sparse NLP solver, is used to converge the problem that has 46,870 variables, 18 complementarity conditions, and a Jacobian sparsity of 0.01%. This large, sparse optimization problem is initiated every 5 minutes to update the model as new plant measurements become available and prior to the control optimization. The same plant model is used for nonlinear model predictive control (MPC) with 10 manipulated variables (MVs) and 26 controlled variables (CVs). In this case, a significant advantage is that with MHE a simpler rigorous model suffices for the application of nonlinear MPC.</description><identifier>ISSN: 0743-1619</identifier><identifier>ISBN: 9781424409884</identifier><identifier>ISBN: 1424409888</identifier><identifier>EISSN: 2378-5861</identifier><identifier>EISBN: 1424409896</identifier><identifier>EISBN: 9781424409891</identifier><identifier>DOI: 10.1109/ACC.2007.4282820</identifier><language>eng</language><publisher>IEEE</publisher><subject>Differential algebraic equations ; Feedback ; Gas industry ; Inductors ; Industrial control ; Phase estimation ; Plastics industry ; Polymers ; Predictive models ; State estimation</subject><ispartof>2007 American Control Conference, 2007, p.1353-1358</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4282820$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4282820$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hedengren, J.D.</creatorcontrib><creatorcontrib>Allsford, K.V.</creatorcontrib><creatorcontrib>Ramlal, J.</creatorcontrib><title>Moving Horizon Estimation and Control for an Industrial Gas Phase Polymerization Reactor</title><title>2007 American Control Conference</title><addtitle>ACC</addtitle><description>Moving horizon estimation (MHE) has been applied to an industrial gas phase polymerization reactor to improve estimates of current states and parameters. MHE is compared to implicit dynamic feedback (IDFtrade). With MHE, there is improved estimation of unmodeled disturbances in the UNIPOLtrade polyethylene plant. The UNIPOLtrade technology is licensed by Univation, a joint venture between ExxonMobil and Dow. The polymerization reactor and plant model is a large-scale set of differential and algebraic equations (DAEs) posed in open equation form. The DAE model is converted to algebraic equations by orthogonal collocation and solved with the MHE objective function in a simultaneous optimization. NOVAtrade, an active-set sparse NLP solver, is used to converge the problem that has 46,870 variables, 18 complementarity conditions, and a Jacobian sparsity of 0.01%. This large, sparse optimization problem is initiated every 5 minutes to update the model as new plant measurements become available and prior to the control optimization. The same plant model is used for nonlinear model predictive control (MPC) with 10 manipulated variables (MVs) and 26 controlled variables (CVs). In this case, a significant advantage is that with MHE a simpler rigorous model suffices for the application of nonlinear MPC.</description><subject>Differential algebraic equations</subject><subject>Feedback</subject><subject>Gas industry</subject><subject>Inductors</subject><subject>Industrial control</subject><subject>Phase estimation</subject><subject>Plastics industry</subject><subject>Polymers</subject><subject>Predictive models</subject><subject>State estimation</subject><issn>0743-1619</issn><issn>2378-5861</issn><isbn>9781424409884</isbn><isbn>1424409888</isbn><isbn>1424409896</isbn><isbn>9781424409891</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UMtqwzAQVF_QJM290It-wO6uJdurYzBpEkhpKDn0FuRYalUcq0huIf36GpKyh51hmWFmGbtHSBFBPc6qKs0AylRmNAxcsDHKTEpQpIpLNspESUlOBV6xqSrp_0bymo2glCLBAtUtG8f4CYBKFTBib8_-x3XvfOmD-_Udn8feHXTvBqi7hle-64NvufVh4HzVNd-xD063fKEj33zoaPjGt8eDGeQn2avR-96HO3ZjdRvN9LwnbPs031bLZP2yWFWzdeJQZJCUBUKpSQqLWuwV5YUlVTe5FDI3AqUlrW0OVFMtUdQGQFiqjaa91XLoNGEPJ1tnjNl9hSF8OO7ODxJ_SrBVXA</recordid><startdate>200707</startdate><enddate>200707</enddate><creator>Hedengren, J.D.</creator><creator>Allsford, K.V.</creator><creator>Ramlal, J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200707</creationdate><title>Moving Horizon Estimation and Control for an Industrial Gas Phase Polymerization Reactor</title><author>Hedengren, J.D. ; Allsford, K.V. ; Ramlal, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1320-76107a843f1a3c9856f89bd54345e314f8aaf508b8b413be003f8bea8cfa4743</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Differential algebraic equations</topic><topic>Feedback</topic><topic>Gas industry</topic><topic>Inductors</topic><topic>Industrial control</topic><topic>Phase estimation</topic><topic>Plastics industry</topic><topic>Polymers</topic><topic>Predictive models</topic><topic>State estimation</topic><toplevel>online_resources</toplevel><creatorcontrib>Hedengren, J.D.</creatorcontrib><creatorcontrib>Allsford, K.V.</creatorcontrib><creatorcontrib>Ramlal, J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hedengren, J.D.</au><au>Allsford, K.V.</au><au>Ramlal, J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Moving Horizon Estimation and Control for an Industrial Gas Phase Polymerization Reactor</atitle><btitle>2007 American Control Conference</btitle><stitle>ACC</stitle><date>2007-07</date><risdate>2007</risdate><spage>1353</spage><epage>1358</epage><pages>1353-1358</pages><issn>0743-1619</issn><eissn>2378-5861</eissn><isbn>9781424409884</isbn><isbn>1424409888</isbn><eisbn>1424409896</eisbn><eisbn>9781424409891</eisbn><abstract>Moving horizon estimation (MHE) has been applied to an industrial gas phase polymerization reactor to improve estimates of current states and parameters. MHE is compared to implicit dynamic feedback (IDFtrade). With MHE, there is improved estimation of unmodeled disturbances in the UNIPOLtrade polyethylene plant. The UNIPOLtrade technology is licensed by Univation, a joint venture between ExxonMobil and Dow. The polymerization reactor and plant model is a large-scale set of differential and algebraic equations (DAEs) posed in open equation form. The DAE model is converted to algebraic equations by orthogonal collocation and solved with the MHE objective function in a simultaneous optimization. NOVAtrade, an active-set sparse NLP solver, is used to converge the problem that has 46,870 variables, 18 complementarity conditions, and a Jacobian sparsity of 0.01%. This large, sparse optimization problem is initiated every 5 minutes to update the model as new plant measurements become available and prior to the control optimization. The same plant model is used for nonlinear model predictive control (MPC) with 10 manipulated variables (MVs) and 26 controlled variables (CVs). In this case, a significant advantage is that with MHE a simpler rigorous model suffices for the application of nonlinear MPC.</abstract><pub>IEEE</pub><doi>10.1109/ACC.2007.4282820</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0743-1619 |
ispartof | 2007 American Control Conference, 2007, p.1353-1358 |
issn | 0743-1619 2378-5861 |
language | eng |
recordid | cdi_ieee_primary_4282820 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Differential algebraic equations Feedback Gas industry Inductors Industrial control Phase estimation Plastics industry Polymers Predictive models State estimation |
title | Moving Horizon Estimation and Control for an Industrial Gas Phase Polymerization Reactor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A36%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Moving%20Horizon%20Estimation%20and%20Control%20for%20an%20Industrial%20Gas%20Phase%20Polymerization%20Reactor&rft.btitle=2007%20American%20Control%20Conference&rft.au=Hedengren,%20J.D.&rft.date=2007-07&rft.spage=1353&rft.epage=1358&rft.pages=1353-1358&rft.issn=0743-1619&rft.eissn=2378-5861&rft.isbn=9781424409884&rft.isbn_list=1424409888&rft_id=info:doi/10.1109/ACC.2007.4282820&rft_dat=%3Cieee_6IE%3E4282820%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424409896&rft.eisbn_list=9781424409891&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4282820&rfr_iscdi=true |