Moving Horizon Estimation and Control for an Industrial Gas Phase Polymerization Reactor

Moving horizon estimation (MHE) has been applied to an industrial gas phase polymerization reactor to improve estimates of current states and parameters. MHE is compared to implicit dynamic feedback (IDFtrade). With MHE, there is improved estimation of unmodeled disturbances in the UNIPOLtrade polye...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hedengren, J.D., Allsford, K.V., Ramlal, J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1358
container_issue
container_start_page 1353
container_title
container_volume
creator Hedengren, J.D.
Allsford, K.V.
Ramlal, J.
description Moving horizon estimation (MHE) has been applied to an industrial gas phase polymerization reactor to improve estimates of current states and parameters. MHE is compared to implicit dynamic feedback (IDFtrade). With MHE, there is improved estimation of unmodeled disturbances in the UNIPOLtrade polyethylene plant. The UNIPOLtrade technology is licensed by Univation, a joint venture between ExxonMobil and Dow. The polymerization reactor and plant model is a large-scale set of differential and algebraic equations (DAEs) posed in open equation form. The DAE model is converted to algebraic equations by orthogonal collocation and solved with the MHE objective function in a simultaneous optimization. NOVAtrade, an active-set sparse NLP solver, is used to converge the problem that has 46,870 variables, 18 complementarity conditions, and a Jacobian sparsity of 0.01%. This large, sparse optimization problem is initiated every 5 minutes to update the model as new plant measurements become available and prior to the control optimization. The same plant model is used for nonlinear model predictive control (MPC) with 10 manipulated variables (MVs) and 26 controlled variables (CVs). In this case, a significant advantage is that with MHE a simpler rigorous model suffices for the application of nonlinear MPC.
doi_str_mv 10.1109/ACC.2007.4282820
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4282820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4282820</ieee_id><sourcerecordid>4282820</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1320-76107a843f1a3c9856f89bd54345e314f8aaf508b8b413be003f8bea8cfa4743</originalsourceid><addsrcrecordid>eNo1UMtqwzAQVF_QJM290It-wO6uJdurYzBpEkhpKDn0FuRYalUcq0huIf36GpKyh51hmWFmGbtHSBFBPc6qKs0AylRmNAxcsDHKTEpQpIpLNspESUlOBV6xqSrp_0bymo2glCLBAtUtG8f4CYBKFTBib8_-x3XvfOmD-_Udn8feHXTvBqi7hle-64NvufVh4HzVNd-xD063fKEj33zoaPjGt8eDGeQn2avR-96HO3ZjdRvN9LwnbPs031bLZP2yWFWzdeJQZJCUBUKpSQqLWuwV5YUlVTe5FDI3AqUlrW0OVFMtUdQGQFiqjaa91XLoNGEPJ1tnjNl9hSF8OO7ODxJ_SrBVXA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Moving Horizon Estimation and Control for an Industrial Gas Phase Polymerization Reactor</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hedengren, J.D. ; Allsford, K.V. ; Ramlal, J.</creator><creatorcontrib>Hedengren, J.D. ; Allsford, K.V. ; Ramlal, J.</creatorcontrib><description>Moving horizon estimation (MHE) has been applied to an industrial gas phase polymerization reactor to improve estimates of current states and parameters. MHE is compared to implicit dynamic feedback (IDFtrade). With MHE, there is improved estimation of unmodeled disturbances in the UNIPOLtrade polyethylene plant. The UNIPOLtrade technology is licensed by Univation, a joint venture between ExxonMobil and Dow. The polymerization reactor and plant model is a large-scale set of differential and algebraic equations (DAEs) posed in open equation form. The DAE model is converted to algebraic equations by orthogonal collocation and solved with the MHE objective function in a simultaneous optimization. NOVAtrade, an active-set sparse NLP solver, is used to converge the problem that has 46,870 variables, 18 complementarity conditions, and a Jacobian sparsity of 0.01%. This large, sparse optimization problem is initiated every 5 minutes to update the model as new plant measurements become available and prior to the control optimization. The same plant model is used for nonlinear model predictive control (MPC) with 10 manipulated variables (MVs) and 26 controlled variables (CVs). In this case, a significant advantage is that with MHE a simpler rigorous model suffices for the application of nonlinear MPC.</description><identifier>ISSN: 0743-1619</identifier><identifier>ISBN: 9781424409884</identifier><identifier>ISBN: 1424409888</identifier><identifier>EISSN: 2378-5861</identifier><identifier>EISBN: 1424409896</identifier><identifier>EISBN: 9781424409891</identifier><identifier>DOI: 10.1109/ACC.2007.4282820</identifier><language>eng</language><publisher>IEEE</publisher><subject>Differential algebraic equations ; Feedback ; Gas industry ; Inductors ; Industrial control ; Phase estimation ; Plastics industry ; Polymers ; Predictive models ; State estimation</subject><ispartof>2007 American Control Conference, 2007, p.1353-1358</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4282820$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4282820$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hedengren, J.D.</creatorcontrib><creatorcontrib>Allsford, K.V.</creatorcontrib><creatorcontrib>Ramlal, J.</creatorcontrib><title>Moving Horizon Estimation and Control for an Industrial Gas Phase Polymerization Reactor</title><title>2007 American Control Conference</title><addtitle>ACC</addtitle><description>Moving horizon estimation (MHE) has been applied to an industrial gas phase polymerization reactor to improve estimates of current states and parameters. MHE is compared to implicit dynamic feedback (IDFtrade). With MHE, there is improved estimation of unmodeled disturbances in the UNIPOLtrade polyethylene plant. The UNIPOLtrade technology is licensed by Univation, a joint venture between ExxonMobil and Dow. The polymerization reactor and plant model is a large-scale set of differential and algebraic equations (DAEs) posed in open equation form. The DAE model is converted to algebraic equations by orthogonal collocation and solved with the MHE objective function in a simultaneous optimization. NOVAtrade, an active-set sparse NLP solver, is used to converge the problem that has 46,870 variables, 18 complementarity conditions, and a Jacobian sparsity of 0.01%. This large, sparse optimization problem is initiated every 5 minutes to update the model as new plant measurements become available and prior to the control optimization. The same plant model is used for nonlinear model predictive control (MPC) with 10 manipulated variables (MVs) and 26 controlled variables (CVs). In this case, a significant advantage is that with MHE a simpler rigorous model suffices for the application of nonlinear MPC.</description><subject>Differential algebraic equations</subject><subject>Feedback</subject><subject>Gas industry</subject><subject>Inductors</subject><subject>Industrial control</subject><subject>Phase estimation</subject><subject>Plastics industry</subject><subject>Polymers</subject><subject>Predictive models</subject><subject>State estimation</subject><issn>0743-1619</issn><issn>2378-5861</issn><isbn>9781424409884</isbn><isbn>1424409888</isbn><isbn>1424409896</isbn><isbn>9781424409891</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UMtqwzAQVF_QJM290It-wO6uJdurYzBpEkhpKDn0FuRYalUcq0huIf36GpKyh51hmWFmGbtHSBFBPc6qKs0AylRmNAxcsDHKTEpQpIpLNspESUlOBV6xqSrp_0bymo2glCLBAtUtG8f4CYBKFTBib8_-x3XvfOmD-_Udn8feHXTvBqi7hle-64NvufVh4HzVNd-xD063fKEj33zoaPjGt8eDGeQn2avR-96HO3ZjdRvN9LwnbPs031bLZP2yWFWzdeJQZJCUBUKpSQqLWuwV5YUlVTe5FDI3AqUlrW0OVFMtUdQGQFiqjaa91XLoNGEPJ1tnjNl9hSF8OO7ODxJ_SrBVXA</recordid><startdate>200707</startdate><enddate>200707</enddate><creator>Hedengren, J.D.</creator><creator>Allsford, K.V.</creator><creator>Ramlal, J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200707</creationdate><title>Moving Horizon Estimation and Control for an Industrial Gas Phase Polymerization Reactor</title><author>Hedengren, J.D. ; Allsford, K.V. ; Ramlal, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1320-76107a843f1a3c9856f89bd54345e314f8aaf508b8b413be003f8bea8cfa4743</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Differential algebraic equations</topic><topic>Feedback</topic><topic>Gas industry</topic><topic>Inductors</topic><topic>Industrial control</topic><topic>Phase estimation</topic><topic>Plastics industry</topic><topic>Polymers</topic><topic>Predictive models</topic><topic>State estimation</topic><toplevel>online_resources</toplevel><creatorcontrib>Hedengren, J.D.</creatorcontrib><creatorcontrib>Allsford, K.V.</creatorcontrib><creatorcontrib>Ramlal, J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hedengren, J.D.</au><au>Allsford, K.V.</au><au>Ramlal, J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Moving Horizon Estimation and Control for an Industrial Gas Phase Polymerization Reactor</atitle><btitle>2007 American Control Conference</btitle><stitle>ACC</stitle><date>2007-07</date><risdate>2007</risdate><spage>1353</spage><epage>1358</epage><pages>1353-1358</pages><issn>0743-1619</issn><eissn>2378-5861</eissn><isbn>9781424409884</isbn><isbn>1424409888</isbn><eisbn>1424409896</eisbn><eisbn>9781424409891</eisbn><abstract>Moving horizon estimation (MHE) has been applied to an industrial gas phase polymerization reactor to improve estimates of current states and parameters. MHE is compared to implicit dynamic feedback (IDFtrade). With MHE, there is improved estimation of unmodeled disturbances in the UNIPOLtrade polyethylene plant. The UNIPOLtrade technology is licensed by Univation, a joint venture between ExxonMobil and Dow. The polymerization reactor and plant model is a large-scale set of differential and algebraic equations (DAEs) posed in open equation form. The DAE model is converted to algebraic equations by orthogonal collocation and solved with the MHE objective function in a simultaneous optimization. NOVAtrade, an active-set sparse NLP solver, is used to converge the problem that has 46,870 variables, 18 complementarity conditions, and a Jacobian sparsity of 0.01%. This large, sparse optimization problem is initiated every 5 minutes to update the model as new plant measurements become available and prior to the control optimization. The same plant model is used for nonlinear model predictive control (MPC) with 10 manipulated variables (MVs) and 26 controlled variables (CVs). In this case, a significant advantage is that with MHE a simpler rigorous model suffices for the application of nonlinear MPC.</abstract><pub>IEEE</pub><doi>10.1109/ACC.2007.4282820</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0743-1619
ispartof 2007 American Control Conference, 2007, p.1353-1358
issn 0743-1619
2378-5861
language eng
recordid cdi_ieee_primary_4282820
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Differential algebraic equations
Feedback
Gas industry
Inductors
Industrial control
Phase estimation
Plastics industry
Polymers
Predictive models
State estimation
title Moving Horizon Estimation and Control for an Industrial Gas Phase Polymerization Reactor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A36%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Moving%20Horizon%20Estimation%20and%20Control%20for%20an%20Industrial%20Gas%20Phase%20Polymerization%20Reactor&rft.btitle=2007%20American%20Control%20Conference&rft.au=Hedengren,%20J.D.&rft.date=2007-07&rft.spage=1353&rft.epage=1358&rft.pages=1353-1358&rft.issn=0743-1619&rft.eissn=2378-5861&rft.isbn=9781424409884&rft.isbn_list=1424409888&rft_id=info:doi/10.1109/ACC.2007.4282820&rft_dat=%3Cieee_6IE%3E4282820%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424409896&rft.eisbn_list=9781424409891&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4282820&rfr_iscdi=true