Relation between Exponential Stability and Input-to-State Stability of Time-Delay Systems

The main contribution of this paper is to establish a link between the exponential stability of an unforced system and the input-to-state stability (ISS) via the Lyapunov-Krasovskii methodology. A new theorem is provided, which proves that an unforced system whose trivial solution is exponentially s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yeganefar, N., Dambrine, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4920
container_issue
container_start_page 4919
container_title
container_volume
creator Yeganefar, N.
Dambrine, M.
Yeganefar, N.
description The main contribution of this paper is to establish a link between the exponential stability of an unforced system and the input-to-state stability (ISS) via the Lyapunov-Krasovskii methodology. A new theorem is provided, which proves that an unforced system whose trivial solution is exponentially stable is input-to-state stable if submitted to a perturbation which can be of an arbitrary size.
doi_str_mv 10.1109/ACC.2007.4282609
format Conference Proceeding
fullrecord <record><control><sourceid>hal_6IE</sourceid><recordid>TN_cdi_ieee_primary_4282609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4282609</ieee_id><sourcerecordid>oai_HAL_hal_01299103v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h1669-99cb779112a946dbc248c53fb025dabc99758784e4986725aa79e186762219673</originalsourceid><addsrcrecordid>eNpNkL1PwzAUxM2XRFu6I7FkZXDxcxzbb6xCoZUqIdEyMEVO-qoapUnVmI_89wS1IKY73f10wzF2DWIEIPBunKYjKYQZKWmlFnjC-qCkUgIt6lPWk7GxPLEaztgQjf3trDpnPWFUzEEDXrJ-07wJAYha9NjrM5Uu-LqKcgqfRFU0-drVFVXBuzJaBJf70oc2ctUqmlW798BDzbs40L-yXkdLvyV-32210aJtAm2bK3axdmVDw6MO2MvDZJlO-fzpcZaO53wDWiNHLHJjEEA6VHqVF1LZIonXuZDJyuUFokmssYoUWm1k4pxBgs5qKQG1iQfs9rC7cWW22_ut27dZ7Xw2Hc-zn0yARAQRf0DH3hxYT0R_8PHO-Bvoa2Kd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Relation between Exponential Stability and Input-to-State Stability of Time-Delay Systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yeganefar, N. ; Dambrine, M. ; Yeganefar, N.</creator><creatorcontrib>Yeganefar, N. ; Dambrine, M. ; Yeganefar, N.</creatorcontrib><description>The main contribution of this paper is to establish a link between the exponential stability of an unforced system and the input-to-state stability (ISS) via the Lyapunov-Krasovskii methodology. A new theorem is provided, which proves that an unforced system whose trivial solution is exponentially stable is input-to-state stable if submitted to a perturbation which can be of an arbitrary size.</description><identifier>ISSN: 0743-1619</identifier><identifier>ISBN: 9781424409884</identifier><identifier>ISBN: 1424409888</identifier><identifier>EISSN: 2378-5861</identifier><identifier>EISBN: 1424409896</identifier><identifier>EISBN: 9781424409891</identifier><identifier>DOI: 10.1109/ACC.2007.4282609</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cities and towns ; Communication system control ; Control systems ; Equations ; Exponential Stability ; Input-to-State Stability ; Lyapunov-Krasovskii Theorem ; Manipulators ; Mathematics ; Networked control systems ; Nonlinear Time-Delay Systems ; Optimization and Control ; Robot control ; Robot sensing systems ; Stability</subject><ispartof>2007 American Control Conference, 2007, p.4919-4920</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6030-9419 ; 0009-0000-4390-8367 ; 0000-0002-0690-935X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4282609$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,882,2052,4036,4037,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4282609$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-01299103$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Yeganefar, N.</creatorcontrib><creatorcontrib>Dambrine, M.</creatorcontrib><creatorcontrib>Yeganefar, N.</creatorcontrib><title>Relation between Exponential Stability and Input-to-State Stability of Time-Delay Systems</title><title>2007 American Control Conference</title><addtitle>ACC</addtitle><description>The main contribution of this paper is to establish a link between the exponential stability of an unforced system and the input-to-state stability (ISS) via the Lyapunov-Krasovskii methodology. A new theorem is provided, which proves that an unforced system whose trivial solution is exponentially stable is input-to-state stable if submitted to a perturbation which can be of an arbitrary size.</description><subject>Cities and towns</subject><subject>Communication system control</subject><subject>Control systems</subject><subject>Equations</subject><subject>Exponential Stability</subject><subject>Input-to-State Stability</subject><subject>Lyapunov-Krasovskii Theorem</subject><subject>Manipulators</subject><subject>Mathematics</subject><subject>Networked control systems</subject><subject>Nonlinear Time-Delay Systems</subject><subject>Optimization and Control</subject><subject>Robot control</subject><subject>Robot sensing systems</subject><subject>Stability</subject><issn>0743-1619</issn><issn>2378-5861</issn><isbn>9781424409884</isbn><isbn>1424409888</isbn><isbn>1424409896</isbn><isbn>9781424409891</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNkL1PwzAUxM2XRFu6I7FkZXDxcxzbb6xCoZUqIdEyMEVO-qoapUnVmI_89wS1IKY73f10wzF2DWIEIPBunKYjKYQZKWmlFnjC-qCkUgIt6lPWk7GxPLEaztgQjf3trDpnPWFUzEEDXrJ-07wJAYha9NjrM5Uu-LqKcgqfRFU0-drVFVXBuzJaBJf70oc2ctUqmlW798BDzbs40L-yXkdLvyV-32210aJtAm2bK3axdmVDw6MO2MvDZJlO-fzpcZaO53wDWiNHLHJjEEA6VHqVF1LZIonXuZDJyuUFokmssYoUWm1k4pxBgs5qKQG1iQfs9rC7cWW22_ut27dZ7Xw2Hc-zn0yARAQRf0DH3hxYT0R_8PHO-Bvoa2Kd</recordid><startdate>200707</startdate><enddate>200707</enddate><creator>Yeganefar, N.</creator><creator>Dambrine, M.</creator><creator>Yeganefar, N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6030-9419</orcidid><orcidid>https://orcid.org/0009-0000-4390-8367</orcidid><orcidid>https://orcid.org/0000-0002-0690-935X</orcidid></search><sort><creationdate>200707</creationdate><title>Relation between Exponential Stability and Input-to-State Stability of Time-Delay Systems</title><author>Yeganefar, N. ; Dambrine, M. ; Yeganefar, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h1669-99cb779112a946dbc248c53fb025dabc99758784e4986725aa79e186762219673</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Cities and towns</topic><topic>Communication system control</topic><topic>Control systems</topic><topic>Equations</topic><topic>Exponential Stability</topic><topic>Input-to-State Stability</topic><topic>Lyapunov-Krasovskii Theorem</topic><topic>Manipulators</topic><topic>Mathematics</topic><topic>Networked control systems</topic><topic>Nonlinear Time-Delay Systems</topic><topic>Optimization and Control</topic><topic>Robot control</topic><topic>Robot sensing systems</topic><topic>Stability</topic><toplevel>online_resources</toplevel><creatorcontrib>Yeganefar, N.</creatorcontrib><creatorcontrib>Dambrine, M.</creatorcontrib><creatorcontrib>Yeganefar, N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yeganefar, N.</au><au>Dambrine, M.</au><au>Yeganefar, N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Relation between Exponential Stability and Input-to-State Stability of Time-Delay Systems</atitle><btitle>2007 American Control Conference</btitle><stitle>ACC</stitle><date>2007-07</date><risdate>2007</risdate><spage>4919</spage><epage>4920</epage><pages>4919-4920</pages><issn>0743-1619</issn><eissn>2378-5861</eissn><isbn>9781424409884</isbn><isbn>1424409888</isbn><eisbn>1424409896</eisbn><eisbn>9781424409891</eisbn><abstract>The main contribution of this paper is to establish a link between the exponential stability of an unforced system and the input-to-state stability (ISS) via the Lyapunov-Krasovskii methodology. A new theorem is provided, which proves that an unforced system whose trivial solution is exponentially stable is input-to-state stable if submitted to a perturbation which can be of an arbitrary size.</abstract><pub>IEEE</pub><doi>10.1109/ACC.2007.4282609</doi><tpages>2</tpages><orcidid>https://orcid.org/0000-0002-6030-9419</orcidid><orcidid>https://orcid.org/0009-0000-4390-8367</orcidid><orcidid>https://orcid.org/0000-0002-0690-935X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0743-1619
ispartof 2007 American Control Conference, 2007, p.4919-4920
issn 0743-1619
2378-5861
language eng
recordid cdi_ieee_primary_4282609
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cities and towns
Communication system control
Control systems
Equations
Exponential Stability
Input-to-State Stability
Lyapunov-Krasovskii Theorem
Manipulators
Mathematics
Networked control systems
Nonlinear Time-Delay Systems
Optimization and Control
Robot control
Robot sensing systems
Stability
title Relation between Exponential Stability and Input-to-State Stability of Time-Delay Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A43%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Relation%20between%20Exponential%20Stability%20and%20Input-to-State%20Stability%20of%20Time-Delay%20Systems&rft.btitle=2007%20American%20Control%20Conference&rft.au=Yeganefar,%20N.&rft.date=2007-07&rft.spage=4919&rft.epage=4920&rft.pages=4919-4920&rft.issn=0743-1619&rft.eissn=2378-5861&rft.isbn=9781424409884&rft.isbn_list=1424409888&rft_id=info:doi/10.1109/ACC.2007.4282609&rft_dat=%3Chal_6IE%3Eoai_HAL_hal_01299103v1%3C/hal_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424409896&rft.eisbn_list=9781424409891&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4282609&rfr_iscdi=true