A Clustering Algorithm Based on Discretized Interval Value

In order to improve the quality of traditional clustering algorithm and prevent the distribution of data from affecting the clustering algorithm greatly, a clustering algorithm based on interval value was proposed. Depending on the consistency of condition attributes and decision attributes in the d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xu, E., Liangshan Shao, Wendong Tan
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 868
container_issue
container_start_page 864
container_title
container_volume 1
creator Xu, E.
Liangshan Shao
Wendong Tan
description In order to improve the quality of traditional clustering algorithm and prevent the distribution of data from affecting the clustering algorithm greatly, a clustering algorithm based on interval value was proposed. Depending on the consistency of condition attributes and decision attributes in the decision table, the data was discretized and attributes were reduced by using data super-cube and information entropy. Based on the above, the algorithm can use the additivity of set feature vector to cluster data just by scanning the decision table only one time. Experimental results indicate that the algorithm is efficient and effective
doi_str_mv 10.1109/CESA.2006.4281773
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4281773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4281773</ieee_id><sourcerecordid>4281773</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-59665f0a9bc58804df574681e0050bd8c1a1d1e37ebd5103db72b78c4e0c3c2b3</originalsourceid><addsrcrecordid>eNotj8tKw0AYRkdEUGsfQNzMCyT-_0zm5i7GqoWCCy_bMrfUkTSVTCrYpzdgV4cDhw8-Qq4RSkQwt83itS4ZgCwrplEpfkIulQFQqLHC00k4MOSGMXNO5jl_AQAaaVCKC3JX06bb5zEOqd_QutvshjR-bum9zTHQXU8fUvZDHNNh0mU_dT-2ox-228crctbaLsf5kTPy_rh4a56L1cvTsqlXRUIQYyGMlKIFa5wXWkMVWqEqqTECCHBBe7QYMHIVXRAIPDjFnNK-iuC5Z47PyM3_booxrr-HtLXD7_r4lf8BmTRG3g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Clustering Algorithm Based on Discretized Interval Value</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xu, E. ; Liangshan Shao ; Wendong Tan</creator><creatorcontrib>Xu, E. ; Liangshan Shao ; Wendong Tan</creatorcontrib><description>In order to improve the quality of traditional clustering algorithm and prevent the distribution of data from affecting the clustering algorithm greatly, a clustering algorithm based on interval value was proposed. Depending on the consistency of condition attributes and decision attributes in the decision table, the data was discretized and attributes were reduced by using data super-cube and information entropy. Based on the above, the algorithm can use the additivity of set feature vector to cluster data just by scanning the decision table only one time. Experimental results indicate that the algorithm is efficient and effective</description><identifier>ISBN: 7302139229</identifier><identifier>ISBN: 9787302139225</identifier><identifier>EISBN: 7900718141</identifier><identifier>EISBN: 9787900718143</identifier><identifier>DOI: 10.1109/CESA.2006.4281773</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; clustering ; Clustering algorithms ; Constraint theory ; decision table ; discretization ; Information entropy ; Information systems ; rough set ; set feature vector ; Set theory ; Space exploration ; Space technology ; Systems engineering and theory ; Systems engineering education</subject><ispartof>The Proceedings of the Multiconference on "Computational Engineering in Systems Applications", 2006, Vol.1, p.864-868</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4281773$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27912,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4281773$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xu, E.</creatorcontrib><creatorcontrib>Liangshan Shao</creatorcontrib><creatorcontrib>Wendong Tan</creatorcontrib><title>A Clustering Algorithm Based on Discretized Interval Value</title><title>The Proceedings of the Multiconference on "Computational Engineering in Systems Applications"</title><addtitle>CESA</addtitle><description>In order to improve the quality of traditional clustering algorithm and prevent the distribution of data from affecting the clustering algorithm greatly, a clustering algorithm based on interval value was proposed. Depending on the consistency of condition attributes and decision attributes in the decision table, the data was discretized and attributes were reduced by using data super-cube and information entropy. Based on the above, the algorithm can use the additivity of set feature vector to cluster data just by scanning the decision table only one time. Experimental results indicate that the algorithm is efficient and effective</description><subject>Application software</subject><subject>clustering</subject><subject>Clustering algorithms</subject><subject>Constraint theory</subject><subject>decision table</subject><subject>discretization</subject><subject>Information entropy</subject><subject>Information systems</subject><subject>rough set</subject><subject>set feature vector</subject><subject>Set theory</subject><subject>Space exploration</subject><subject>Space technology</subject><subject>Systems engineering and theory</subject><subject>Systems engineering education</subject><isbn>7302139229</isbn><isbn>9787302139225</isbn><isbn>7900718141</isbn><isbn>9787900718143</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8tKw0AYRkdEUGsfQNzMCyT-_0zm5i7GqoWCCy_bMrfUkTSVTCrYpzdgV4cDhw8-Qq4RSkQwt83itS4ZgCwrplEpfkIulQFQqLHC00k4MOSGMXNO5jl_AQAaaVCKC3JX06bb5zEOqd_QutvshjR-bum9zTHQXU8fUvZDHNNh0mU_dT-2ox-228crctbaLsf5kTPy_rh4a56L1cvTsqlXRUIQYyGMlKIFa5wXWkMVWqEqqTECCHBBe7QYMHIVXRAIPDjFnNK-iuC5Z47PyM3_booxrr-HtLXD7_r4lf8BmTRG3g</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>Xu, E.</creator><creator>Liangshan Shao</creator><creator>Wendong Tan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200610</creationdate><title>A Clustering Algorithm Based on Discretized Interval Value</title><author>Xu, E. ; Liangshan Shao ; Wendong Tan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-59665f0a9bc58804df574681e0050bd8c1a1d1e37ebd5103db72b78c4e0c3c2b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Application software</topic><topic>clustering</topic><topic>Clustering algorithms</topic><topic>Constraint theory</topic><topic>decision table</topic><topic>discretization</topic><topic>Information entropy</topic><topic>Information systems</topic><topic>rough set</topic><topic>set feature vector</topic><topic>Set theory</topic><topic>Space exploration</topic><topic>Space technology</topic><topic>Systems engineering and theory</topic><topic>Systems engineering education</topic><toplevel>online_resources</toplevel><creatorcontrib>Xu, E.</creatorcontrib><creatorcontrib>Liangshan Shao</creatorcontrib><creatorcontrib>Wendong Tan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, E.</au><au>Liangshan Shao</au><au>Wendong Tan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Clustering Algorithm Based on Discretized Interval Value</atitle><btitle>The Proceedings of the Multiconference on "Computational Engineering in Systems Applications"</btitle><stitle>CESA</stitle><date>2006-10</date><risdate>2006</risdate><volume>1</volume><spage>864</spage><epage>868</epage><pages>864-868</pages><isbn>7302139229</isbn><isbn>9787302139225</isbn><eisbn>7900718141</eisbn><eisbn>9787900718143</eisbn><abstract>In order to improve the quality of traditional clustering algorithm and prevent the distribution of data from affecting the clustering algorithm greatly, a clustering algorithm based on interval value was proposed. Depending on the consistency of condition attributes and decision attributes in the decision table, the data was discretized and attributes were reduced by using data super-cube and information entropy. Based on the above, the algorithm can use the additivity of set feature vector to cluster data just by scanning the decision table only one time. Experimental results indicate that the algorithm is efficient and effective</abstract><pub>IEEE</pub><doi>10.1109/CESA.2006.4281773</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 7302139229
ispartof The Proceedings of the Multiconference on "Computational Engineering in Systems Applications", 2006, Vol.1, p.864-868
issn
language eng
recordid cdi_ieee_primary_4281773
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Application software
clustering
Clustering algorithms
Constraint theory
decision table
discretization
Information entropy
Information systems
rough set
set feature vector
Set theory
Space exploration
Space technology
Systems engineering and theory
Systems engineering education
title A Clustering Algorithm Based on Discretized Interval Value
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A44%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Clustering%20Algorithm%20Based%20on%20Discretized%20Interval%20Value&rft.btitle=The%20Proceedings%20of%20the%20Multiconference%20on%20%22Computational%20Engineering%20in%20Systems%20Applications%22&rft.au=Xu,%20E.&rft.date=2006-10&rft.volume=1&rft.spage=864&rft.epage=868&rft.pages=864-868&rft.isbn=7302139229&rft.isbn_list=9787302139225&rft_id=info:doi/10.1109/CESA.2006.4281773&rft_dat=%3Cieee_6IE%3E4281773%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=7900718141&rft.eisbn_list=9787900718143&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4281773&rfr_iscdi=true