Adaptive Neural Network Controller Design for Missile Systems with Unmodeled Dynamics

An adaptive inverse compensator design method was proposed for a class of nonlinear systems with input ummodeled dynamics based on RBF neural networks. The compensator was designed using two neural networks, one to estimate the input unmodeled dynamics and another to provide adaptive inverse compens...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jin, Y.Q., Shi, X.J., Hu, Y.A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 793
container_issue
container_start_page 789
container_title
container_volume 1
creator Jin, Y.Q.
Shi, X.J.
Hu, Y.A.
description An adaptive inverse compensator design method was proposed for a class of nonlinear systems with input ummodeled dynamics based on RBF neural networks. The compensator was designed using two neural networks, one to estimate the input unmodeled dynamics and another to provide adaptive inverse compensation to the input unmodeled dynamics. The method relaxes some rigorous demands to unmodeled dynamics such as relative degree zero, satisfying the small gain assumption and so on. The controller was designed using backstepping control techniques. Lyapunov theory was used to derive the tuning laws for the weight vectors of the neural networks and proved that the close-loop system is gradually stable. The proposed method is applied to design the missile control systems with input unmodeled dynamics in pitch channel. The simulation results show the effectiveness of the proposed control method
doi_str_mv 10.1109/CESA.2006.4281759
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4281759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4281759</ieee_id><sourcerecordid>4281759</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-159b1ad7e54f91a21b8bb189d3f4f3fe58891425f829f8fbe4e68f2c30f515173</originalsourceid><addsrcrecordid>eNotkMlOwzAUAI0QElD6AYiLfyDBz0tiH6u0LFKBQ8m5cppnMGSpbEOVv6cSPY3mMoch5BZYDsDMfbXaLHLOWJFLrqFU5oxcl4axEjRIOD-KYByE4dxcknmMX4wxMIWBQl2RetHaffK_SF_xJ9juiHQYwzetxiGFsesw0CVG_zFQNwb64mP0HdLNFBP2kR58-qT10I8tdtjS5TTY3u_iDblwtos4P3FG6ofVe_WUrd8en6vFOvPAVMpAmQZsW6KSzoDl0OimAW1a4aQTDpXWBiRXTnPjtGtQYqEd3wnmFCgoxYzc_Xc9Im73wfc2TNvTBvEHlWxRgA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Adaptive Neural Network Controller Design for Missile Systems with Unmodeled Dynamics</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jin, Y.Q. ; Shi, X.J. ; Hu, Y.A.</creator><creatorcontrib>Jin, Y.Q. ; Shi, X.J. ; Hu, Y.A.</creatorcontrib><description>An adaptive inverse compensator design method was proposed for a class of nonlinear systems with input ummodeled dynamics based on RBF neural networks. The compensator was designed using two neural networks, one to estimate the input unmodeled dynamics and another to provide adaptive inverse compensation to the input unmodeled dynamics. The method relaxes some rigorous demands to unmodeled dynamics such as relative degree zero, satisfying the small gain assumption and so on. The controller was designed using backstepping control techniques. Lyapunov theory was used to derive the tuning laws for the weight vectors of the neural networks and proved that the close-loop system is gradually stable. The proposed method is applied to design the missile control systems with input unmodeled dynamics in pitch channel. The simulation results show the effectiveness of the proposed control method</description><identifier>ISBN: 7302139229</identifier><identifier>ISBN: 9787302139225</identifier><identifier>EISBN: 7900718141</identifier><identifier>EISBN: 9787900718143</identifier><identifier>DOI: 10.1109/CESA.2006.4281759</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive control ; adaptive inverse ; Adaptive systems ; Backstepping ; Control systems ; Design methodology ; Input unmodeled dynamics ; Missiles ; Neural networks ; Nonlinear dynamical systems ; Nonlinear systems ; Programmable control</subject><ispartof>The Proceedings of the Multiconference on "Computational Engineering in Systems Applications", 2006, Vol.1, p.789-793</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4281759$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4281759$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jin, Y.Q.</creatorcontrib><creatorcontrib>Shi, X.J.</creatorcontrib><creatorcontrib>Hu, Y.A.</creatorcontrib><title>Adaptive Neural Network Controller Design for Missile Systems with Unmodeled Dynamics</title><title>The Proceedings of the Multiconference on "Computational Engineering in Systems Applications"</title><addtitle>CESA</addtitle><description>An adaptive inverse compensator design method was proposed for a class of nonlinear systems with input ummodeled dynamics based on RBF neural networks. The compensator was designed using two neural networks, one to estimate the input unmodeled dynamics and another to provide adaptive inverse compensation to the input unmodeled dynamics. The method relaxes some rigorous demands to unmodeled dynamics such as relative degree zero, satisfying the small gain assumption and so on. The controller was designed using backstepping control techniques. Lyapunov theory was used to derive the tuning laws for the weight vectors of the neural networks and proved that the close-loop system is gradually stable. The proposed method is applied to design the missile control systems with input unmodeled dynamics in pitch channel. The simulation results show the effectiveness of the proposed control method</description><subject>Adaptive control</subject><subject>adaptive inverse</subject><subject>Adaptive systems</subject><subject>Backstepping</subject><subject>Control systems</subject><subject>Design methodology</subject><subject>Input unmodeled dynamics</subject><subject>Missiles</subject><subject>Neural networks</subject><subject>Nonlinear dynamical systems</subject><subject>Nonlinear systems</subject><subject>Programmable control</subject><isbn>7302139229</isbn><isbn>9787302139225</isbn><isbn>7900718141</isbn><isbn>9787900718143</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkMlOwzAUAI0QElD6AYiLfyDBz0tiH6u0LFKBQ8m5cppnMGSpbEOVv6cSPY3mMoch5BZYDsDMfbXaLHLOWJFLrqFU5oxcl4axEjRIOD-KYByE4dxcknmMX4wxMIWBQl2RetHaffK_SF_xJ9juiHQYwzetxiGFsesw0CVG_zFQNwb64mP0HdLNFBP2kR58-qT10I8tdtjS5TTY3u_iDblwtos4P3FG6ofVe_WUrd8en6vFOvPAVMpAmQZsW6KSzoDl0OimAW1a4aQTDpXWBiRXTnPjtGtQYqEd3wnmFCgoxYzc_Xc9Im73wfc2TNvTBvEHlWxRgA</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>Jin, Y.Q.</creator><creator>Shi, X.J.</creator><creator>Hu, Y.A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200610</creationdate><title>Adaptive Neural Network Controller Design for Missile Systems with Unmodeled Dynamics</title><author>Jin, Y.Q. ; Shi, X.J. ; Hu, Y.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-159b1ad7e54f91a21b8bb189d3f4f3fe58891425f829f8fbe4e68f2c30f515173</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adaptive control</topic><topic>adaptive inverse</topic><topic>Adaptive systems</topic><topic>Backstepping</topic><topic>Control systems</topic><topic>Design methodology</topic><topic>Input unmodeled dynamics</topic><topic>Missiles</topic><topic>Neural networks</topic><topic>Nonlinear dynamical systems</topic><topic>Nonlinear systems</topic><topic>Programmable control</topic><toplevel>online_resources</toplevel><creatorcontrib>Jin, Y.Q.</creatorcontrib><creatorcontrib>Shi, X.J.</creatorcontrib><creatorcontrib>Hu, Y.A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jin, Y.Q.</au><au>Shi, X.J.</au><au>Hu, Y.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Adaptive Neural Network Controller Design for Missile Systems with Unmodeled Dynamics</atitle><btitle>The Proceedings of the Multiconference on "Computational Engineering in Systems Applications"</btitle><stitle>CESA</stitle><date>2006-10</date><risdate>2006</risdate><volume>1</volume><spage>789</spage><epage>793</epage><pages>789-793</pages><isbn>7302139229</isbn><isbn>9787302139225</isbn><eisbn>7900718141</eisbn><eisbn>9787900718143</eisbn><abstract>An adaptive inverse compensator design method was proposed for a class of nonlinear systems with input ummodeled dynamics based on RBF neural networks. The compensator was designed using two neural networks, one to estimate the input unmodeled dynamics and another to provide adaptive inverse compensation to the input unmodeled dynamics. The method relaxes some rigorous demands to unmodeled dynamics such as relative degree zero, satisfying the small gain assumption and so on. The controller was designed using backstepping control techniques. Lyapunov theory was used to derive the tuning laws for the weight vectors of the neural networks and proved that the close-loop system is gradually stable. The proposed method is applied to design the missile control systems with input unmodeled dynamics in pitch channel. The simulation results show the effectiveness of the proposed control method</abstract><pub>IEEE</pub><doi>10.1109/CESA.2006.4281759</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 7302139229
ispartof The Proceedings of the Multiconference on "Computational Engineering in Systems Applications", 2006, Vol.1, p.789-793
issn
language eng
recordid cdi_ieee_primary_4281759
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptive control
adaptive inverse
Adaptive systems
Backstepping
Control systems
Design methodology
Input unmodeled dynamics
Missiles
Neural networks
Nonlinear dynamical systems
Nonlinear systems
Programmable control
title Adaptive Neural Network Controller Design for Missile Systems with Unmodeled Dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A06%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Adaptive%20Neural%20Network%20Controller%20Design%20for%20Missile%20Systems%20with%20Unmodeled%20Dynamics&rft.btitle=The%20Proceedings%20of%20the%20Multiconference%20on%20%22Computational%20Engineering%20in%20Systems%20Applications%22&rft.au=Jin,%20Y.Q.&rft.date=2006-10&rft.volume=1&rft.spage=789&rft.epage=793&rft.pages=789-793&rft.isbn=7302139229&rft.isbn_list=9787302139225&rft_id=info:doi/10.1109/CESA.2006.4281759&rft_dat=%3Cieee_6IE%3E4281759%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=7900718141&rft.eisbn_list=9787900718143&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4281759&rfr_iscdi=true