Adaptive Neural Network Controller Design for Missile Systems with Unmodeled Dynamics
An adaptive inverse compensator design method was proposed for a class of nonlinear systems with input ummodeled dynamics based on RBF neural networks. The compensator was designed using two neural networks, one to estimate the input unmodeled dynamics and another to provide adaptive inverse compens...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 793 |
---|---|
container_issue | |
container_start_page | 789 |
container_title | |
container_volume | 1 |
creator | Jin, Y.Q. Shi, X.J. Hu, Y.A. |
description | An adaptive inverse compensator design method was proposed for a class of nonlinear systems with input ummodeled dynamics based on RBF neural networks. The compensator was designed using two neural networks, one to estimate the input unmodeled dynamics and another to provide adaptive inverse compensation to the input unmodeled dynamics. The method relaxes some rigorous demands to unmodeled dynamics such as relative degree zero, satisfying the small gain assumption and so on. The controller was designed using backstepping control techniques. Lyapunov theory was used to derive the tuning laws for the weight vectors of the neural networks and proved that the close-loop system is gradually stable. The proposed method is applied to design the missile control systems with input unmodeled dynamics in pitch channel. The simulation results show the effectiveness of the proposed control method |
doi_str_mv | 10.1109/CESA.2006.4281759 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4281759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4281759</ieee_id><sourcerecordid>4281759</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-159b1ad7e54f91a21b8bb189d3f4f3fe58891425f829f8fbe4e68f2c30f515173</originalsourceid><addsrcrecordid>eNotkMlOwzAUAI0QElD6AYiLfyDBz0tiH6u0LFKBQ8m5cppnMGSpbEOVv6cSPY3mMoch5BZYDsDMfbXaLHLOWJFLrqFU5oxcl4axEjRIOD-KYByE4dxcknmMX4wxMIWBQl2RetHaffK_SF_xJ9juiHQYwzetxiGFsesw0CVG_zFQNwb64mP0HdLNFBP2kR58-qT10I8tdtjS5TTY3u_iDblwtos4P3FG6ofVe_WUrd8en6vFOvPAVMpAmQZsW6KSzoDl0OimAW1a4aQTDpXWBiRXTnPjtGtQYqEd3wnmFCgoxYzc_Xc9Im73wfc2TNvTBvEHlWxRgA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Adaptive Neural Network Controller Design for Missile Systems with Unmodeled Dynamics</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jin, Y.Q. ; Shi, X.J. ; Hu, Y.A.</creator><creatorcontrib>Jin, Y.Q. ; Shi, X.J. ; Hu, Y.A.</creatorcontrib><description>An adaptive inverse compensator design method was proposed for a class of nonlinear systems with input ummodeled dynamics based on RBF neural networks. The compensator was designed using two neural networks, one to estimate the input unmodeled dynamics and another to provide adaptive inverse compensation to the input unmodeled dynamics. The method relaxes some rigorous demands to unmodeled dynamics such as relative degree zero, satisfying the small gain assumption and so on. The controller was designed using backstepping control techniques. Lyapunov theory was used to derive the tuning laws for the weight vectors of the neural networks and proved that the close-loop system is gradually stable. The proposed method is applied to design the missile control systems with input unmodeled dynamics in pitch channel. The simulation results show the effectiveness of the proposed control method</description><identifier>ISBN: 7302139229</identifier><identifier>ISBN: 9787302139225</identifier><identifier>EISBN: 7900718141</identifier><identifier>EISBN: 9787900718143</identifier><identifier>DOI: 10.1109/CESA.2006.4281759</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive control ; adaptive inverse ; Adaptive systems ; Backstepping ; Control systems ; Design methodology ; Input unmodeled dynamics ; Missiles ; Neural networks ; Nonlinear dynamical systems ; Nonlinear systems ; Programmable control</subject><ispartof>The Proceedings of the Multiconference on "Computational Engineering in Systems Applications", 2006, Vol.1, p.789-793</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4281759$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4281759$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jin, Y.Q.</creatorcontrib><creatorcontrib>Shi, X.J.</creatorcontrib><creatorcontrib>Hu, Y.A.</creatorcontrib><title>Adaptive Neural Network Controller Design for Missile Systems with Unmodeled Dynamics</title><title>The Proceedings of the Multiconference on "Computational Engineering in Systems Applications"</title><addtitle>CESA</addtitle><description>An adaptive inverse compensator design method was proposed for a class of nonlinear systems with input ummodeled dynamics based on RBF neural networks. The compensator was designed using two neural networks, one to estimate the input unmodeled dynamics and another to provide adaptive inverse compensation to the input unmodeled dynamics. The method relaxes some rigorous demands to unmodeled dynamics such as relative degree zero, satisfying the small gain assumption and so on. The controller was designed using backstepping control techniques. Lyapunov theory was used to derive the tuning laws for the weight vectors of the neural networks and proved that the close-loop system is gradually stable. The proposed method is applied to design the missile control systems with input unmodeled dynamics in pitch channel. The simulation results show the effectiveness of the proposed control method</description><subject>Adaptive control</subject><subject>adaptive inverse</subject><subject>Adaptive systems</subject><subject>Backstepping</subject><subject>Control systems</subject><subject>Design methodology</subject><subject>Input unmodeled dynamics</subject><subject>Missiles</subject><subject>Neural networks</subject><subject>Nonlinear dynamical systems</subject><subject>Nonlinear systems</subject><subject>Programmable control</subject><isbn>7302139229</isbn><isbn>9787302139225</isbn><isbn>7900718141</isbn><isbn>9787900718143</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkMlOwzAUAI0QElD6AYiLfyDBz0tiH6u0LFKBQ8m5cppnMGSpbEOVv6cSPY3mMoch5BZYDsDMfbXaLHLOWJFLrqFU5oxcl4axEjRIOD-KYByE4dxcknmMX4wxMIWBQl2RetHaffK_SF_xJ9juiHQYwzetxiGFsesw0CVG_zFQNwb64mP0HdLNFBP2kR58-qT10I8tdtjS5TTY3u_iDblwtos4P3FG6ofVe_WUrd8en6vFOvPAVMpAmQZsW6KSzoDl0OimAW1a4aQTDpXWBiRXTnPjtGtQYqEd3wnmFCgoxYzc_Xc9Im73wfc2TNvTBvEHlWxRgA</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>Jin, Y.Q.</creator><creator>Shi, X.J.</creator><creator>Hu, Y.A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200610</creationdate><title>Adaptive Neural Network Controller Design for Missile Systems with Unmodeled Dynamics</title><author>Jin, Y.Q. ; Shi, X.J. ; Hu, Y.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-159b1ad7e54f91a21b8bb189d3f4f3fe58891425f829f8fbe4e68f2c30f515173</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adaptive control</topic><topic>adaptive inverse</topic><topic>Adaptive systems</topic><topic>Backstepping</topic><topic>Control systems</topic><topic>Design methodology</topic><topic>Input unmodeled dynamics</topic><topic>Missiles</topic><topic>Neural networks</topic><topic>Nonlinear dynamical systems</topic><topic>Nonlinear systems</topic><topic>Programmable control</topic><toplevel>online_resources</toplevel><creatorcontrib>Jin, Y.Q.</creatorcontrib><creatorcontrib>Shi, X.J.</creatorcontrib><creatorcontrib>Hu, Y.A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jin, Y.Q.</au><au>Shi, X.J.</au><au>Hu, Y.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Adaptive Neural Network Controller Design for Missile Systems with Unmodeled Dynamics</atitle><btitle>The Proceedings of the Multiconference on "Computational Engineering in Systems Applications"</btitle><stitle>CESA</stitle><date>2006-10</date><risdate>2006</risdate><volume>1</volume><spage>789</spage><epage>793</epage><pages>789-793</pages><isbn>7302139229</isbn><isbn>9787302139225</isbn><eisbn>7900718141</eisbn><eisbn>9787900718143</eisbn><abstract>An adaptive inverse compensator design method was proposed for a class of nonlinear systems with input ummodeled dynamics based on RBF neural networks. The compensator was designed using two neural networks, one to estimate the input unmodeled dynamics and another to provide adaptive inverse compensation to the input unmodeled dynamics. The method relaxes some rigorous demands to unmodeled dynamics such as relative degree zero, satisfying the small gain assumption and so on. The controller was designed using backstepping control techniques. Lyapunov theory was used to derive the tuning laws for the weight vectors of the neural networks and proved that the close-loop system is gradually stable. The proposed method is applied to design the missile control systems with input unmodeled dynamics in pitch channel. The simulation results show the effectiveness of the proposed control method</abstract><pub>IEEE</pub><doi>10.1109/CESA.2006.4281759</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 7302139229 |
ispartof | The Proceedings of the Multiconference on "Computational Engineering in Systems Applications", 2006, Vol.1, p.789-793 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4281759 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Adaptive control adaptive inverse Adaptive systems Backstepping Control systems Design methodology Input unmodeled dynamics Missiles Neural networks Nonlinear dynamical systems Nonlinear systems Programmable control |
title | Adaptive Neural Network Controller Design for Missile Systems with Unmodeled Dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A06%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Adaptive%20Neural%20Network%20Controller%20Design%20for%20Missile%20Systems%20with%20Unmodeled%20Dynamics&rft.btitle=The%20Proceedings%20of%20the%20Multiconference%20on%20%22Computational%20Engineering%20in%20Systems%20Applications%22&rft.au=Jin,%20Y.Q.&rft.date=2006-10&rft.volume=1&rft.spage=789&rft.epage=793&rft.pages=789-793&rft.isbn=7302139229&rft.isbn_list=9787302139225&rft_id=info:doi/10.1109/CESA.2006.4281759&rft_dat=%3Cieee_6IE%3E4281759%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=7900718141&rft.eisbn_list=9787900718143&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4281759&rfr_iscdi=true |