Current Leads and Optimized Thermal Packaging for Superconducting Systems on Multistage Cryocoolers
Packaging of a superconducting electronic system on a compact multistage cryocooler requires careful management of thermal loads from input and output leads, in order not to exceed the heat lift capacity of the various stages of the cooler. In particular, RSFQ systems typically require a large total...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2007-06, Vol.17 (2), p.975-978 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 978 |
---|---|
container_issue | 2 |
container_start_page | 975 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 17 |
creator | Kadin, A.M. Webber, R.J. Gupta, D. |
description | Packaging of a superconducting electronic system on a compact multistage cryocooler requires careful management of thermal loads from input and output leads, in order not to exceed the heat lift capacity of the various stages of the cooler. In particular, RSFQ systems typically require a large total bias current or greater. A general analysis of resistive wires shows that the tradeoff between heat flow and Joule heating yields a minimum heat load from optimized bias leads on a low- stage, given by , where is the thermalization temperature of the leads on the previous (hotter) stage. This is independent of the material, number, and geometry of the leads, as long as the total lead resistance is optimized. A similar tradeoff between heat flow and signal attenuation can be applied to the optimization of high-frequency input/output lines. Superconducting leads are not subject to these limitations, and can result in further reduction in heat load. Design examples are presented for an RSFQ-based radio receiver on either a two-stage or a four-stage cooler. |
doi_str_mv | 10.1109/TASC.2007.898719 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4277480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4277480</ieee_id><sourcerecordid>889377940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-22c1678b3cf0d77b581537b0fb2fada64cdb307e184575a1efb52dcc93bf31c03</originalsourceid><addsrcrecordid>eNp9kUFr3DAQhU1oIWmSe6EXEWh68kYjWZZ0DCZpCxsS2O1ZyPJo69S2NpJ92P762GxooYeeZpj53mOGl2Ufga4AqL7Z3m6qFaNUrpRWEvRJdgZCqJwJEO_mngrIFWP8NPuQ0jOlUKhCnGWummLEYSRrtE0idmjI435s-_Y3NmT7E2NvO_Jk3S-7a4cd8SGSzbTH6MLQTG5cZptDGrFPJAzkYerGNo12h6SKh-BC6DCmi-y9t13Cy7d6nv24v9tW3_L149fv1e06d1zxMWfMQSlVzZ2njZS1UCC4rKmvmbeNLQvX1JxKhPlwKSygrwVrnNO89hwc5efZl6PvPoaXCdNo-jY57Do7YJiSUUpzKXWxkNf_JXnJOeiCz-DVP-BzmOIwf2E0MAZlKRY3eoRcDClF9GYf297GgwFqlnDMEo5ZwjHHcGbJ5zdfm5ztfLSDa9NfnaZAuVi4T0euRcQ_64JJWSjKXwFbV5iU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912216650</pqid></control><display><type>article</type><title>Current Leads and Optimized Thermal Packaging for Superconducting Systems on Multistage Cryocoolers</title><source>IEEE Electronic Library (IEL)</source><creator>Kadin, A.M. ; Webber, R.J. ; Gupta, D.</creator><creatorcontrib>Kadin, A.M. ; Webber, R.J. ; Gupta, D.</creatorcontrib><description>Packaging of a superconducting electronic system on a compact multistage cryocooler requires careful management of thermal loads from input and output leads, in order not to exceed the heat lift capacity of the various stages of the cooler. In particular, RSFQ systems typically require a large total bias current or greater. A general analysis of resistive wires shows that the tradeoff between heat flow and Joule heating yields a minimum heat load from optimized bias leads on a low- stage, given by , where is the thermalization temperature of the leads on the previous (hotter) stage. This is independent of the material, number, and geometry of the leads, as long as the total lead resistance is optimized. A similar tradeoff between heat flow and signal attenuation can be applied to the optimization of high-frequency input/output lines. Superconducting leads are not subject to these limitations, and can result in further reduction in heat load. Design examples are presented for an RSFQ-based radio receiver on either a two-stage or a four-stage cooler.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2007.898719</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Attenuation ; Bias ; Circuit properties ; Coolers ; Cryocooler ; cryopackaging ; current leads ; Design. Technologies. Operation analysis. Testing ; Digital circuits ; Electric connection. Cables. Wiring ; Electric, optical and optoelectronic circuits ; Electrical engineering. Electrical power engineering ; Electronic circuits ; Electronic packaging thermal management ; Electronics ; Exact sciences and technology ; Heat transfer ; Heat transmission ; Heating ; Integrated circuits ; Load flow analysis ; Multistage ; Packaging ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Superconducting materials ; Superconductivity ; Temperature ; Thermal loading ; Thermal management ; Thermal management of electronics ; thermal optimization ; Thermal resistance ; Various equipment and components ; Wires</subject><ispartof>IEEE transactions on applied superconductivity, 2007-06, Vol.17 (2), p.975-978</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-22c1678b3cf0d77b581537b0fb2fada64cdb307e184575a1efb52dcc93bf31c03</citedby><cites>FETCH-LOGICAL-c383t-22c1678b3cf0d77b581537b0fb2fada64cdb307e184575a1efb52dcc93bf31c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4277480$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,796,23930,23931,25140,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4277480$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19010359$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kadin, A.M.</creatorcontrib><creatorcontrib>Webber, R.J.</creatorcontrib><creatorcontrib>Gupta, D.</creatorcontrib><title>Current Leads and Optimized Thermal Packaging for Superconducting Systems on Multistage Cryocoolers</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>Packaging of a superconducting electronic system on a compact multistage cryocooler requires careful management of thermal loads from input and output leads, in order not to exceed the heat lift capacity of the various stages of the cooler. In particular, RSFQ systems typically require a large total bias current or greater. A general analysis of resistive wires shows that the tradeoff between heat flow and Joule heating yields a minimum heat load from optimized bias leads on a low- stage, given by , where is the thermalization temperature of the leads on the previous (hotter) stage. This is independent of the material, number, and geometry of the leads, as long as the total lead resistance is optimized. A similar tradeoff between heat flow and signal attenuation can be applied to the optimization of high-frequency input/output lines. Superconducting leads are not subject to these limitations, and can result in further reduction in heat load. Design examples are presented for an RSFQ-based radio receiver on either a two-stage or a four-stage cooler.</description><subject>Applied sciences</subject><subject>Attenuation</subject><subject>Bias</subject><subject>Circuit properties</subject><subject>Coolers</subject><subject>Cryocooler</subject><subject>cryopackaging</subject><subject>current leads</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Digital circuits</subject><subject>Electric connection. Cables. Wiring</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electronic circuits</subject><subject>Electronic packaging thermal management</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Heat transfer</subject><subject>Heat transmission</subject><subject>Heating</subject><subject>Integrated circuits</subject><subject>Load flow analysis</subject><subject>Multistage</subject><subject>Packaging</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Superconducting materials</subject><subject>Superconductivity</subject><subject>Temperature</subject><subject>Thermal loading</subject><subject>Thermal management</subject><subject>Thermal management of electronics</subject><subject>thermal optimization</subject><subject>Thermal resistance</subject><subject>Various equipment and components</subject><subject>Wires</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kUFr3DAQhU1oIWmSe6EXEWh68kYjWZZ0DCZpCxsS2O1ZyPJo69S2NpJ92P762GxooYeeZpj53mOGl2Ufga4AqL7Z3m6qFaNUrpRWEvRJdgZCqJwJEO_mngrIFWP8NPuQ0jOlUKhCnGWummLEYSRrtE0idmjI435s-_Y3NmT7E2NvO_Jk3S-7a4cd8SGSzbTH6MLQTG5cZptDGrFPJAzkYerGNo12h6SKh-BC6DCmi-y9t13Cy7d6nv24v9tW3_L149fv1e06d1zxMWfMQSlVzZ2njZS1UCC4rKmvmbeNLQvX1JxKhPlwKSygrwVrnNO89hwc5efZl6PvPoaXCdNo-jY57Do7YJiSUUpzKXWxkNf_JXnJOeiCz-DVP-BzmOIwf2E0MAZlKRY3eoRcDClF9GYf297GgwFqlnDMEo5ZwjHHcGbJ5zdfm5ztfLSDa9NfnaZAuVi4T0euRcQ_64JJWSjKXwFbV5iU</recordid><startdate>20070601</startdate><enddate>20070601</enddate><creator>Kadin, A.M.</creator><creator>Webber, R.J.</creator><creator>Gupta, D.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20070601</creationdate><title>Current Leads and Optimized Thermal Packaging for Superconducting Systems on Multistage Cryocoolers</title><author>Kadin, A.M. ; Webber, R.J. ; Gupta, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-22c1678b3cf0d77b581537b0fb2fada64cdb307e184575a1efb52dcc93bf31c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Attenuation</topic><topic>Bias</topic><topic>Circuit properties</topic><topic>Coolers</topic><topic>Cryocooler</topic><topic>cryopackaging</topic><topic>current leads</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Digital circuits</topic><topic>Electric connection. Cables. Wiring</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electronic circuits</topic><topic>Electronic packaging thermal management</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Heat transfer</topic><topic>Heat transmission</topic><topic>Heating</topic><topic>Integrated circuits</topic><topic>Load flow analysis</topic><topic>Multistage</topic><topic>Packaging</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Superconducting materials</topic><topic>Superconductivity</topic><topic>Temperature</topic><topic>Thermal loading</topic><topic>Thermal management</topic><topic>Thermal management of electronics</topic><topic>thermal optimization</topic><topic>Thermal resistance</topic><topic>Various equipment and components</topic><topic>Wires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kadin, A.M.</creatorcontrib><creatorcontrib>Webber, R.J.</creatorcontrib><creatorcontrib>Gupta, D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kadin, A.M.</au><au>Webber, R.J.</au><au>Gupta, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Current Leads and Optimized Thermal Packaging for Superconducting Systems on Multistage Cryocoolers</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2007-06-01</date><risdate>2007</risdate><volume>17</volume><issue>2</issue><spage>975</spage><epage>978</epage><pages>975-978</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>Packaging of a superconducting electronic system on a compact multistage cryocooler requires careful management of thermal loads from input and output leads, in order not to exceed the heat lift capacity of the various stages of the cooler. In particular, RSFQ systems typically require a large total bias current or greater. A general analysis of resistive wires shows that the tradeoff between heat flow and Joule heating yields a minimum heat load from optimized bias leads on a low- stage, given by , where is the thermalization temperature of the leads on the previous (hotter) stage. This is independent of the material, number, and geometry of the leads, as long as the total lead resistance is optimized. A similar tradeoff between heat flow and signal attenuation can be applied to the optimization of high-frequency input/output lines. Superconducting leads are not subject to these limitations, and can result in further reduction in heat load. Design examples are presented for an RSFQ-based radio receiver on either a two-stage or a four-stage cooler.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TASC.2007.898719</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2007-06, Vol.17 (2), p.975-978 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_ieee_primary_4277480 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Attenuation Bias Circuit properties Coolers Cryocooler cryopackaging current leads Design. Technologies. Operation analysis. Testing Digital circuits Electric connection. Cables. Wiring Electric, optical and optoelectronic circuits Electrical engineering. Electrical power engineering Electronic circuits Electronic packaging thermal management Electronics Exact sciences and technology Heat transfer Heat transmission Heating Integrated circuits Load flow analysis Multistage Packaging Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Superconducting materials Superconductivity Temperature Thermal loading Thermal management Thermal management of electronics thermal optimization Thermal resistance Various equipment and components Wires |
title | Current Leads and Optimized Thermal Packaging for Superconducting Systems on Multistage Cryocoolers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T03%3A07%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Current%20Leads%20and%20Optimized%20Thermal%20Packaging%20for%20Superconducting%20Systems%20on%20Multistage%20Cryocoolers&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Kadin,%20A.M.&rft.date=2007-06-01&rft.volume=17&rft.issue=2&rft.spage=975&rft.epage=978&rft.pages=975-978&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2007.898719&rft_dat=%3Cproquest_RIE%3E889377940%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912216650&rft_id=info:pmid/&rft_ieee_id=4277480&rfr_iscdi=true |