Current Leads and Optimized Thermal Packaging for Superconducting Systems on Multistage Cryocoolers

Packaging of a superconducting electronic system on a compact multistage cryocooler requires careful management of thermal loads from input and output leads, in order not to exceed the heat lift capacity of the various stages of the cooler. In particular, RSFQ systems typically require a large total...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2007-06, Vol.17 (2), p.975-978
Hauptverfasser: Kadin, A.M., Webber, R.J., Gupta, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 978
container_issue 2
container_start_page 975
container_title IEEE transactions on applied superconductivity
container_volume 17
creator Kadin, A.M.
Webber, R.J.
Gupta, D.
description Packaging of a superconducting electronic system on a compact multistage cryocooler requires careful management of thermal loads from input and output leads, in order not to exceed the heat lift capacity of the various stages of the cooler. In particular, RSFQ systems typically require a large total bias current or greater. A general analysis of resistive wires shows that the tradeoff between heat flow and Joule heating yields a minimum heat load from optimized bias leads on a low- stage, given by , where is the thermalization temperature of the leads on the previous (hotter) stage. This is independent of the material, number, and geometry of the leads, as long as the total lead resistance is optimized. A similar tradeoff between heat flow and signal attenuation can be applied to the optimization of high-frequency input/output lines. Superconducting leads are not subject to these limitations, and can result in further reduction in heat load. Design examples are presented for an RSFQ-based radio receiver on either a two-stage or a four-stage cooler.
doi_str_mv 10.1109/TASC.2007.898719
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4277480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4277480</ieee_id><sourcerecordid>889377940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-22c1678b3cf0d77b581537b0fb2fada64cdb307e184575a1efb52dcc93bf31c03</originalsourceid><addsrcrecordid>eNp9kUFr3DAQhU1oIWmSe6EXEWh68kYjWZZ0DCZpCxsS2O1ZyPJo69S2NpJ92P762GxooYeeZpj53mOGl2Ufga4AqL7Z3m6qFaNUrpRWEvRJdgZCqJwJEO_mngrIFWP8NPuQ0jOlUKhCnGWummLEYSRrtE0idmjI435s-_Y3NmT7E2NvO_Jk3S-7a4cd8SGSzbTH6MLQTG5cZptDGrFPJAzkYerGNo12h6SKh-BC6DCmi-y9t13Cy7d6nv24v9tW3_L149fv1e06d1zxMWfMQSlVzZ2njZS1UCC4rKmvmbeNLQvX1JxKhPlwKSygrwVrnNO89hwc5efZl6PvPoaXCdNo-jY57Do7YJiSUUpzKXWxkNf_JXnJOeiCz-DVP-BzmOIwf2E0MAZlKRY3eoRcDClF9GYf297GgwFqlnDMEo5ZwjHHcGbJ5zdfm5ztfLSDa9NfnaZAuVi4T0euRcQ_64JJWSjKXwFbV5iU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912216650</pqid></control><display><type>article</type><title>Current Leads and Optimized Thermal Packaging for Superconducting Systems on Multistage Cryocoolers</title><source>IEEE Electronic Library (IEL)</source><creator>Kadin, A.M. ; Webber, R.J. ; Gupta, D.</creator><creatorcontrib>Kadin, A.M. ; Webber, R.J. ; Gupta, D.</creatorcontrib><description>Packaging of a superconducting electronic system on a compact multistage cryocooler requires careful management of thermal loads from input and output leads, in order not to exceed the heat lift capacity of the various stages of the cooler. In particular, RSFQ systems typically require a large total bias current or greater. A general analysis of resistive wires shows that the tradeoff between heat flow and Joule heating yields a minimum heat load from optimized bias leads on a low- stage, given by , where is the thermalization temperature of the leads on the previous (hotter) stage. This is independent of the material, number, and geometry of the leads, as long as the total lead resistance is optimized. A similar tradeoff between heat flow and signal attenuation can be applied to the optimization of high-frequency input/output lines. Superconducting leads are not subject to these limitations, and can result in further reduction in heat load. Design examples are presented for an RSFQ-based radio receiver on either a two-stage or a four-stage cooler.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2007.898719</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Attenuation ; Bias ; Circuit properties ; Coolers ; Cryocooler ; cryopackaging ; current leads ; Design. Technologies. Operation analysis. Testing ; Digital circuits ; Electric connection. Cables. Wiring ; Electric, optical and optoelectronic circuits ; Electrical engineering. Electrical power engineering ; Electronic circuits ; Electronic packaging thermal management ; Electronics ; Exact sciences and technology ; Heat transfer ; Heat transmission ; Heating ; Integrated circuits ; Load flow analysis ; Multistage ; Packaging ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Superconducting materials ; Superconductivity ; Temperature ; Thermal loading ; Thermal management ; Thermal management of electronics ; thermal optimization ; Thermal resistance ; Various equipment and components ; Wires</subject><ispartof>IEEE transactions on applied superconductivity, 2007-06, Vol.17 (2), p.975-978</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-22c1678b3cf0d77b581537b0fb2fada64cdb307e184575a1efb52dcc93bf31c03</citedby><cites>FETCH-LOGICAL-c383t-22c1678b3cf0d77b581537b0fb2fada64cdb307e184575a1efb52dcc93bf31c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4277480$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,796,23930,23931,25140,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4277480$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19010359$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kadin, A.M.</creatorcontrib><creatorcontrib>Webber, R.J.</creatorcontrib><creatorcontrib>Gupta, D.</creatorcontrib><title>Current Leads and Optimized Thermal Packaging for Superconducting Systems on Multistage Cryocoolers</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>Packaging of a superconducting electronic system on a compact multistage cryocooler requires careful management of thermal loads from input and output leads, in order not to exceed the heat lift capacity of the various stages of the cooler. In particular, RSFQ systems typically require a large total bias current or greater. A general analysis of resistive wires shows that the tradeoff between heat flow and Joule heating yields a minimum heat load from optimized bias leads on a low- stage, given by , where is the thermalization temperature of the leads on the previous (hotter) stage. This is independent of the material, number, and geometry of the leads, as long as the total lead resistance is optimized. A similar tradeoff between heat flow and signal attenuation can be applied to the optimization of high-frequency input/output lines. Superconducting leads are not subject to these limitations, and can result in further reduction in heat load. Design examples are presented for an RSFQ-based radio receiver on either a two-stage or a four-stage cooler.</description><subject>Applied sciences</subject><subject>Attenuation</subject><subject>Bias</subject><subject>Circuit properties</subject><subject>Coolers</subject><subject>Cryocooler</subject><subject>cryopackaging</subject><subject>current leads</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Digital circuits</subject><subject>Electric connection. Cables. Wiring</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electronic circuits</subject><subject>Electronic packaging thermal management</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Heat transfer</subject><subject>Heat transmission</subject><subject>Heating</subject><subject>Integrated circuits</subject><subject>Load flow analysis</subject><subject>Multistage</subject><subject>Packaging</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Superconducting materials</subject><subject>Superconductivity</subject><subject>Temperature</subject><subject>Thermal loading</subject><subject>Thermal management</subject><subject>Thermal management of electronics</subject><subject>thermal optimization</subject><subject>Thermal resistance</subject><subject>Various equipment and components</subject><subject>Wires</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kUFr3DAQhU1oIWmSe6EXEWh68kYjWZZ0DCZpCxsS2O1ZyPJo69S2NpJ92P762GxooYeeZpj53mOGl2Ufga4AqL7Z3m6qFaNUrpRWEvRJdgZCqJwJEO_mngrIFWP8NPuQ0jOlUKhCnGWummLEYSRrtE0idmjI435s-_Y3NmT7E2NvO_Jk3S-7a4cd8SGSzbTH6MLQTG5cZptDGrFPJAzkYerGNo12h6SKh-BC6DCmi-y9t13Cy7d6nv24v9tW3_L149fv1e06d1zxMWfMQSlVzZ2njZS1UCC4rKmvmbeNLQvX1JxKhPlwKSygrwVrnNO89hwc5efZl6PvPoaXCdNo-jY57Do7YJiSUUpzKXWxkNf_JXnJOeiCz-DVP-BzmOIwf2E0MAZlKRY3eoRcDClF9GYf297GgwFqlnDMEo5ZwjHHcGbJ5zdfm5ztfLSDa9NfnaZAuVi4T0euRcQ_64JJWSjKXwFbV5iU</recordid><startdate>20070601</startdate><enddate>20070601</enddate><creator>Kadin, A.M.</creator><creator>Webber, R.J.</creator><creator>Gupta, D.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20070601</creationdate><title>Current Leads and Optimized Thermal Packaging for Superconducting Systems on Multistage Cryocoolers</title><author>Kadin, A.M. ; Webber, R.J. ; Gupta, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-22c1678b3cf0d77b581537b0fb2fada64cdb307e184575a1efb52dcc93bf31c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Attenuation</topic><topic>Bias</topic><topic>Circuit properties</topic><topic>Coolers</topic><topic>Cryocooler</topic><topic>cryopackaging</topic><topic>current leads</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Digital circuits</topic><topic>Electric connection. Cables. Wiring</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electronic circuits</topic><topic>Electronic packaging thermal management</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Heat transfer</topic><topic>Heat transmission</topic><topic>Heating</topic><topic>Integrated circuits</topic><topic>Load flow analysis</topic><topic>Multistage</topic><topic>Packaging</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Superconducting materials</topic><topic>Superconductivity</topic><topic>Temperature</topic><topic>Thermal loading</topic><topic>Thermal management</topic><topic>Thermal management of electronics</topic><topic>thermal optimization</topic><topic>Thermal resistance</topic><topic>Various equipment and components</topic><topic>Wires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kadin, A.M.</creatorcontrib><creatorcontrib>Webber, R.J.</creatorcontrib><creatorcontrib>Gupta, D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kadin, A.M.</au><au>Webber, R.J.</au><au>Gupta, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Current Leads and Optimized Thermal Packaging for Superconducting Systems on Multistage Cryocoolers</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2007-06-01</date><risdate>2007</risdate><volume>17</volume><issue>2</issue><spage>975</spage><epage>978</epage><pages>975-978</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>Packaging of a superconducting electronic system on a compact multistage cryocooler requires careful management of thermal loads from input and output leads, in order not to exceed the heat lift capacity of the various stages of the cooler. In particular, RSFQ systems typically require a large total bias current or greater. A general analysis of resistive wires shows that the tradeoff between heat flow and Joule heating yields a minimum heat load from optimized bias leads on a low- stage, given by , where is the thermalization temperature of the leads on the previous (hotter) stage. This is independent of the material, number, and geometry of the leads, as long as the total lead resistance is optimized. A similar tradeoff between heat flow and signal attenuation can be applied to the optimization of high-frequency input/output lines. Superconducting leads are not subject to these limitations, and can result in further reduction in heat load. Design examples are presented for an RSFQ-based radio receiver on either a two-stage or a four-stage cooler.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TASC.2007.898719</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2007-06, Vol.17 (2), p.975-978
issn 1051-8223
1558-2515
language eng
recordid cdi_ieee_primary_4277480
source IEEE Electronic Library (IEL)
subjects Applied sciences
Attenuation
Bias
Circuit properties
Coolers
Cryocooler
cryopackaging
current leads
Design. Technologies. Operation analysis. Testing
Digital circuits
Electric connection. Cables. Wiring
Electric, optical and optoelectronic circuits
Electrical engineering. Electrical power engineering
Electronic circuits
Electronic packaging thermal management
Electronics
Exact sciences and technology
Heat transfer
Heat transmission
Heating
Integrated circuits
Load flow analysis
Multistage
Packaging
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Superconducting materials
Superconductivity
Temperature
Thermal loading
Thermal management
Thermal management of electronics
thermal optimization
Thermal resistance
Various equipment and components
Wires
title Current Leads and Optimized Thermal Packaging for Superconducting Systems on Multistage Cryocoolers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T03%3A07%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Current%20Leads%20and%20Optimized%20Thermal%20Packaging%20for%20Superconducting%20Systems%20on%20Multistage%20Cryocoolers&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Kadin,%20A.M.&rft.date=2007-06-01&rft.volume=17&rft.issue=2&rft.spage=975&rft.epage=978&rft.pages=975-978&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2007.898719&rft_dat=%3Cproquest_RIE%3E889377940%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912216650&rft_id=info:pmid/&rft_ieee_id=4277480&rfr_iscdi=true