Neural Stabilizing Controller Based on Co-evolutionary Predator-Prey Particle Swarm Optimization

In this paper, an approach based on particle swarm optimization (PSO) and Lyapunov method to construct neural stabilizing controller is presented. The procedure to learn the value of neural network is formulated as min-max problem. And the problem is solved by the co-evolutionary predator-prey PSO w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ishigame, A., Higashitani, M., Yasuda, K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4342
container_issue
container_start_page 4337
container_title
container_volume 5
creator Ishigame, A.
Higashitani, M.
Yasuda, K.
description In this paper, an approach based on particle swarm optimization (PSO) and Lyapunov method to construct neural stabilizing controller is presented. The procedure to learn the value of neural network is formulated as min-max problem. And the problem is solved by the co-evolutionary predator-prey PSO which we newly propose. The PSO is able to generate an optimal set of parameters for neural controller. And then, the proposed neural controller can be satisfied the Lyapunov stability condition. The proposed method is validated through numerical simulations with power system stabilizing control problem comparing to the conventional control method.
doi_str_mv 10.1109/ICSMC.2006.384816
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4274581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4274581</ieee_id><sourcerecordid>4274581</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-615472ea54664defd65342444935a369010bbc0adebe071b78223688e4541c723</originalsourceid><addsrcrecordid>eNo1T9lKAzEUjRvYVj9AfMkPpN7smUcd3KBaoQq-1UznViLpTMmkiv16p6hP92wcziXkjMOYcygu7svZQzkWAGYsnXLc7JEhV0Ip4ABynwyEtpZxo_XBvwFFYQ7JgIMRrBDi9ZgMu-4DQIDibkDeHnGTfKSz7KsQwzY077Rsm5zaGDHRK99hTdum1xh-tnGTQ9v49E2fEtY-t4n1oGc-5bCISGdfPq3odJ3DKmz9LnxCjpY-dnj6d0fk5eb6ubxjk-ntfXk5YYFbnZnhWlmBXitjVI3L2mi5268Kqb00Rf9gVS3A11ghWF5ZJ4Q0zqHSii-skCNy_tsbEHG-TmHVz5wrYZV2XP4AvWtYGA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Neural Stabilizing Controller Based on Co-evolutionary Predator-Prey Particle Swarm Optimization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ishigame, A. ; Higashitani, M. ; Yasuda, K.</creator><creatorcontrib>Ishigame, A. ; Higashitani, M. ; Yasuda, K.</creatorcontrib><description>In this paper, an approach based on particle swarm optimization (PSO) and Lyapunov method to construct neural stabilizing controller is presented. The procedure to learn the value of neural network is formulated as min-max problem. And the problem is solved by the co-evolutionary predator-prey PSO which we newly propose. The PSO is able to generate an optimal set of parameters for neural controller. And then, the proposed neural controller can be satisfied the Lyapunov stability condition. The proposed method is validated through numerical simulations with power system stabilizing control problem comparing to the conventional control method.</description><identifier>ISSN: 1062-922X</identifier><identifier>ISBN: 1424400996</identifier><identifier>ISBN: 9781424400997</identifier><identifier>EISSN: 2577-1655</identifier><identifier>EISBN: 1424401003</identifier><identifier>EISBN: 9781424401000</identifier><identifier>DOI: 10.1109/ICSMC.2006.384816</identifier><language>eng</language><publisher>IEEE</publisher><subject>Control system synthesis ; Lyapunov method ; Neural networks ; Numerical simulation ; Optimal control ; Particle swarm optimization ; Power system control ; Power system simulation ; Power system stability ; Power systems</subject><ispartof>2006 IEEE International Conference on Systems, Man and Cybernetics, 2006, Vol.5, p.4337-4342</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4274581$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4274581$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ishigame, A.</creatorcontrib><creatorcontrib>Higashitani, M.</creatorcontrib><creatorcontrib>Yasuda, K.</creatorcontrib><title>Neural Stabilizing Controller Based on Co-evolutionary Predator-Prey Particle Swarm Optimization</title><title>2006 IEEE International Conference on Systems, Man and Cybernetics</title><addtitle>ICSMC</addtitle><description>In this paper, an approach based on particle swarm optimization (PSO) and Lyapunov method to construct neural stabilizing controller is presented. The procedure to learn the value of neural network is formulated as min-max problem. And the problem is solved by the co-evolutionary predator-prey PSO which we newly propose. The PSO is able to generate an optimal set of parameters for neural controller. And then, the proposed neural controller can be satisfied the Lyapunov stability condition. The proposed method is validated through numerical simulations with power system stabilizing control problem comparing to the conventional control method.</description><subject>Control system synthesis</subject><subject>Lyapunov method</subject><subject>Neural networks</subject><subject>Numerical simulation</subject><subject>Optimal control</subject><subject>Particle swarm optimization</subject><subject>Power system control</subject><subject>Power system simulation</subject><subject>Power system stability</subject><subject>Power systems</subject><issn>1062-922X</issn><issn>2577-1655</issn><isbn>1424400996</isbn><isbn>9781424400997</isbn><isbn>1424401003</isbn><isbn>9781424401000</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1T9lKAzEUjRvYVj9AfMkPpN7smUcd3KBaoQq-1UznViLpTMmkiv16p6hP92wcziXkjMOYcygu7svZQzkWAGYsnXLc7JEhV0Ip4ABynwyEtpZxo_XBvwFFYQ7JgIMRrBDi9ZgMu-4DQIDibkDeHnGTfKSz7KsQwzY077Rsm5zaGDHRK99hTdum1xh-tnGTQ9v49E2fEtY-t4n1oGc-5bCISGdfPq3odJ3DKmz9LnxCjpY-dnj6d0fk5eb6ubxjk-ntfXk5YYFbnZnhWlmBXitjVI3L2mi5268Kqb00Rf9gVS3A11ghWF5ZJ4Q0zqHSii-skCNy_tsbEHG-TmHVz5wrYZV2XP4AvWtYGA</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>Ishigame, A.</creator><creator>Higashitani, M.</creator><creator>Yasuda, K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200610</creationdate><title>Neural Stabilizing Controller Based on Co-evolutionary Predator-Prey Particle Swarm Optimization</title><author>Ishigame, A. ; Higashitani, M. ; Yasuda, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-615472ea54664defd65342444935a369010bbc0adebe071b78223688e4541c723</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Control system synthesis</topic><topic>Lyapunov method</topic><topic>Neural networks</topic><topic>Numerical simulation</topic><topic>Optimal control</topic><topic>Particle swarm optimization</topic><topic>Power system control</topic><topic>Power system simulation</topic><topic>Power system stability</topic><topic>Power systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Ishigame, A.</creatorcontrib><creatorcontrib>Higashitani, M.</creatorcontrib><creatorcontrib>Yasuda, K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ishigame, A.</au><au>Higashitani, M.</au><au>Yasuda, K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Neural Stabilizing Controller Based on Co-evolutionary Predator-Prey Particle Swarm Optimization</atitle><btitle>2006 IEEE International Conference on Systems, Man and Cybernetics</btitle><stitle>ICSMC</stitle><date>2006-10</date><risdate>2006</risdate><volume>5</volume><spage>4337</spage><epage>4342</epage><pages>4337-4342</pages><issn>1062-922X</issn><eissn>2577-1655</eissn><isbn>1424400996</isbn><isbn>9781424400997</isbn><eisbn>1424401003</eisbn><eisbn>9781424401000</eisbn><abstract>In this paper, an approach based on particle swarm optimization (PSO) and Lyapunov method to construct neural stabilizing controller is presented. The procedure to learn the value of neural network is formulated as min-max problem. And the problem is solved by the co-evolutionary predator-prey PSO which we newly propose. The PSO is able to generate an optimal set of parameters for neural controller. And then, the proposed neural controller can be satisfied the Lyapunov stability condition. The proposed method is validated through numerical simulations with power system stabilizing control problem comparing to the conventional control method.</abstract><pub>IEEE</pub><doi>10.1109/ICSMC.2006.384816</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1062-922X
ispartof 2006 IEEE International Conference on Systems, Man and Cybernetics, 2006, Vol.5, p.4337-4342
issn 1062-922X
2577-1655
language eng
recordid cdi_ieee_primary_4274581
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Control system synthesis
Lyapunov method
Neural networks
Numerical simulation
Optimal control
Particle swarm optimization
Power system control
Power system simulation
Power system stability
Power systems
title Neural Stabilizing Controller Based on Co-evolutionary Predator-Prey Particle Swarm Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A27%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Neural%20Stabilizing%20Controller%20Based%20on%20Co-evolutionary%20Predator-Prey%20Particle%20Swarm%20Optimization&rft.btitle=2006%20IEEE%20International%20Conference%20on%20Systems,%20Man%20and%20Cybernetics&rft.au=Ishigame,%20A.&rft.date=2006-10&rft.volume=5&rft.spage=4337&rft.epage=4342&rft.pages=4337-4342&rft.issn=1062-922X&rft.eissn=2577-1655&rft.isbn=1424400996&rft.isbn_list=9781424400997&rft_id=info:doi/10.1109/ICSMC.2006.384816&rft_dat=%3Cieee_6IE%3E4274581%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424401003&rft.eisbn_list=9781424401000&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4274581&rfr_iscdi=true