Using Group Prior to Identify People in Consumer Images

While face recognition techniques have rapidly advanced in the last few years, most of the work is in the domain of security applications. For consumer imaging applications, person recognition is an important tool that is useful for searching and retrieving images from a personal image collection. I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gallagher, A.C., Tsuhan Chen
Format: Tagungsbericht
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Gallagher, A.C.
Tsuhan Chen
description While face recognition techniques have rapidly advanced in the last few years, most of the work is in the domain of security applications. For consumer imaging applications, person recognition is an important tool that is useful for searching and retrieving images from a personal image collection. It has been shown that when recognizing a single person in an image, a maximum likelihood classifier requires the prior probability for each candidate individual. In this paper, we extend this idea and describe the benefits of using a group prior for identifying people in consumer images with multiple people. The group prior describes the probability of a group of individuals appearing together in an image. In our application, we have a subset of ambiguously labeled images for a consumer image collection, where we seek to identify all of the people in the collection. We describe a simple algorithm for resolving the ambiguous labels. We show that despite errors in resolving ambiguous labels, useful classifiers can be trained with the resolved labels. Recognition performance is further improved with a group prior learned from the ambiguous labels. In summary, by modeling the relationships between the people with the group prior, we improve classification performance.
doi_str_mv 10.1109/CVPR.2007.383492
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4270490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4270490</ieee_id><sourcerecordid>4270490</sourcerecordid><originalsourceid>FETCH-LOGICAL-i156t-9106f3e52e179b7b85a6d4209611bfbdcabdbebebd6bd17030d56aeb759e1e73</originalsourceid><addsrcrecordid>eNotTktLw0AYXFHBWnMXvOwfSNwv-z5K0BooGKR6Lbvul7LSPNikh_57A3bmMAwMM0PII7ACgNnn6rv5LErGdMENF7a8IvcgSiEADNPXJLPaXLy28oasgCmeKwv2jmTT9MsWmCUqzYroryn2B7pJw2mkTYpDovNA64D9HNszbXAYj0hjT6uhn04dJlp37oDTA7lt3XHC7KJrsnt73VXv-fZjU1cv2zyCVHNul-mWoyxxueK1N9KpIEpmFYBvffhxPnhcGJQPoBlnQSqHXkuLgJqvydN_bUTE_Zhi59J5L0rNhGX8DxBJSL4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Using Group Prior to Identify People in Consumer Images</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Gallagher, A.C. ; Tsuhan Chen</creator><creatorcontrib>Gallagher, A.C. ; Tsuhan Chen</creatorcontrib><description>While face recognition techniques have rapidly advanced in the last few years, most of the work is in the domain of security applications. For consumer imaging applications, person recognition is an important tool that is useful for searching and retrieving images from a personal image collection. It has been shown that when recognizing a single person in an image, a maximum likelihood classifier requires the prior probability for each candidate individual. In this paper, we extend this idea and describe the benefits of using a group prior for identifying people in consumer images with multiple people. The group prior describes the probability of a group of individuals appearing together in an image. In our application, we have a subset of ambiguously labeled images for a consumer image collection, where we seek to identify all of the people in the collection. We describe a simple algorithm for resolving the ambiguous labels. We show that despite errors in resolving ambiguous labels, useful classifiers can be trained with the resolved labels. Recognition performance is further improved with a group prior learned from the ambiguous labels. In summary, by modeling the relationships between the people with the group prior, we improve classification performance.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 9781424411795</identifier><identifier>ISBN: 1424411793</identifier><identifier>EISBN: 1424411807</identifier><identifier>EISBN: 9781424411801</identifier><identifier>DOI: 10.1109/CVPR.2007.383492</identifier><language>eng ; jpn</language><publisher>IEEE</publisher><subject>Face recognition ; Image databases ; Image recognition ; Image resolution ; Image retrieval ; Maximum likelihood estimation ; Mirrors ; Reflection ; Security ; Software packages</subject><ispartof>2007 IEEE Conference on Computer Vision and Pattern Recognition, 2007, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4270490$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4270490$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gallagher, A.C.</creatorcontrib><creatorcontrib>Tsuhan Chen</creatorcontrib><title>Using Group Prior to Identify People in Consumer Images</title><title>2007 IEEE Conference on Computer Vision and Pattern Recognition</title><addtitle>CVPR</addtitle><description>While face recognition techniques have rapidly advanced in the last few years, most of the work is in the domain of security applications. For consumer imaging applications, person recognition is an important tool that is useful for searching and retrieving images from a personal image collection. It has been shown that when recognizing a single person in an image, a maximum likelihood classifier requires the prior probability for each candidate individual. In this paper, we extend this idea and describe the benefits of using a group prior for identifying people in consumer images with multiple people. The group prior describes the probability of a group of individuals appearing together in an image. In our application, we have a subset of ambiguously labeled images for a consumer image collection, where we seek to identify all of the people in the collection. We describe a simple algorithm for resolving the ambiguous labels. We show that despite errors in resolving ambiguous labels, useful classifiers can be trained with the resolved labels. Recognition performance is further improved with a group prior learned from the ambiguous labels. In summary, by modeling the relationships between the people with the group prior, we improve classification performance.</description><subject>Face recognition</subject><subject>Image databases</subject><subject>Image recognition</subject><subject>Image resolution</subject><subject>Image retrieval</subject><subject>Maximum likelihood estimation</subject><subject>Mirrors</subject><subject>Reflection</subject><subject>Security</subject><subject>Software packages</subject><issn>1063-6919</issn><isbn>9781424411795</isbn><isbn>1424411793</isbn><isbn>1424411807</isbn><isbn>9781424411801</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotTktLw0AYXFHBWnMXvOwfSNwv-z5K0BooGKR6Lbvul7LSPNikh_57A3bmMAwMM0PII7ACgNnn6rv5LErGdMENF7a8IvcgSiEADNPXJLPaXLy28oasgCmeKwv2jmTT9MsWmCUqzYroryn2B7pJw2mkTYpDovNA64D9HNszbXAYj0hjT6uhn04dJlp37oDTA7lt3XHC7KJrsnt73VXv-fZjU1cv2zyCVHNul-mWoyxxueK1N9KpIEpmFYBvffhxPnhcGJQPoBlnQSqHXkuLgJqvydN_bUTE_Zhi59J5L0rNhGX8DxBJSL4</recordid><startdate>200706</startdate><enddate>200706</enddate><creator>Gallagher, A.C.</creator><creator>Tsuhan Chen</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200706</creationdate><title>Using Group Prior to Identify People in Consumer Images</title><author>Gallagher, A.C. ; Tsuhan Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i156t-9106f3e52e179b7b85a6d4209611bfbdcabdbebebd6bd17030d56aeb759e1e73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng ; jpn</language><creationdate>2007</creationdate><topic>Face recognition</topic><topic>Image databases</topic><topic>Image recognition</topic><topic>Image resolution</topic><topic>Image retrieval</topic><topic>Maximum likelihood estimation</topic><topic>Mirrors</topic><topic>Reflection</topic><topic>Security</topic><topic>Software packages</topic><toplevel>online_resources</toplevel><creatorcontrib>Gallagher, A.C.</creatorcontrib><creatorcontrib>Tsuhan Chen</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gallagher, A.C.</au><au>Tsuhan Chen</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Using Group Prior to Identify People in Consumer Images</atitle><btitle>2007 IEEE Conference on Computer Vision and Pattern Recognition</btitle><stitle>CVPR</stitle><date>2007-06</date><risdate>2007</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1063-6919</issn><isbn>9781424411795</isbn><isbn>1424411793</isbn><eisbn>1424411807</eisbn><eisbn>9781424411801</eisbn><abstract>While face recognition techniques have rapidly advanced in the last few years, most of the work is in the domain of security applications. For consumer imaging applications, person recognition is an important tool that is useful for searching and retrieving images from a personal image collection. It has been shown that when recognizing a single person in an image, a maximum likelihood classifier requires the prior probability for each candidate individual. In this paper, we extend this idea and describe the benefits of using a group prior for identifying people in consumer images with multiple people. The group prior describes the probability of a group of individuals appearing together in an image. In our application, we have a subset of ambiguously labeled images for a consumer image collection, where we seek to identify all of the people in the collection. We describe a simple algorithm for resolving the ambiguous labels. We show that despite errors in resolving ambiguous labels, useful classifiers can be trained with the resolved labels. Recognition performance is further improved with a group prior learned from the ambiguous labels. In summary, by modeling the relationships between the people with the group prior, we improve classification performance.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.2007.383492</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6919
ispartof 2007 IEEE Conference on Computer Vision and Pattern Recognition, 2007, p.1-8
issn 1063-6919
language eng ; jpn
recordid cdi_ieee_primary_4270490
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Face recognition
Image databases
Image recognition
Image resolution
Image retrieval
Maximum likelihood estimation
Mirrors
Reflection
Security
Software packages
title Using Group Prior to Identify People in Consumer Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A23%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Using%20Group%20Prior%20to%20Identify%20People%20in%20Consumer%20Images&rft.btitle=2007%20IEEE%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition&rft.au=Gallagher,%20A.C.&rft.date=2007-06&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1063-6919&rft.isbn=9781424411795&rft.isbn_list=1424411793&rft_id=info:doi/10.1109/CVPR.2007.383492&rft_dat=%3Cieee_6IE%3E4270490%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424411807&rft.eisbn_list=9781424411801&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4270490&rfr_iscdi=true