Online Spatial-temporal Data Fusion for Robust Adaptive Tracking

One problem with the adaptive tracking is that the data that are used to train the new target model often contain errors and these errors will affect the quality of the new target model. As time passes by, these errors will accumulate and eventually lead the tracker to drift away. In this paper, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jixu Chen, Qiang Ji
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Jixu Chen
Qiang Ji
description One problem with the adaptive tracking is that the data that are used to train the new target model often contain errors and these errors will affect the quality of the new target model. As time passes by, these errors will accumulate and eventually lead the tracker to drift away. In this paper, we propose a new method based on online data fusion to alleviate this tracking drift problem. Based on combining the spatial and temporal data through a dynamic Bayesian network, the proposed method can improve the quality of online data labeling, therefore minimizing the error associated with model updating and alleviating the tracking drift problem. Experiments show the proposed method significantly improves the performance of an existing adaptive tracking method.
doi_str_mv 10.1109/CVPR.2007.383436
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4270434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4270434</ieee_id><sourcerecordid>4270434</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-2cd2d2ad63e98c12e09b3287af5ca0d1499e4ab3412811fa6504a72ef5681fba3</originalsourceid><addsrcrecordid>eNotkF1LwzAYhSMqOGfvBW_yB1rzJmk-7hzVqTCYzOLteNsmEu3a0maC_96COzeHBw7PxSHkFlgGwOx98fG2yzhjOhNGSKHOyDVILiWAYfqcJFabE2ubX5AFMCVSZcFekWSavtgcM09zsyAP264NnaPvA8aAbRrdYehHbOkjRqTr4xT6jvp-pLu-Ok6RrhocYvhxtByx_g7d5w259NhOLjn1kpTrp7J4STfb59ditUmDZTHldcMbjo0SzpoauGO2Etxo9HmNrAFprZNYCQncAHhUOZOoufO5MuArFEty968Nzrn9MIYDjr97yTWT8wN_OFRLmQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Online Spatial-temporal Data Fusion for Robust Adaptive Tracking</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jixu Chen ; Qiang Ji</creator><creatorcontrib>Jixu Chen ; Qiang Ji</creatorcontrib><description>One problem with the adaptive tracking is that the data that are used to train the new target model often contain errors and these errors will affect the quality of the new target model. As time passes by, these errors will accumulate and eventually lead the tracker to drift away. In this paper, we propose a new method based on online data fusion to alleviate this tracking drift problem. Based on combining the spatial and temporal data through a dynamic Bayesian network, the proposed method can improve the quality of online data labeling, therefore minimizing the error associated with model updating and alleviating the tracking drift problem. Experiments show the proposed method significantly improves the performance of an existing adaptive tracking method.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 9781424411795</identifier><identifier>ISBN: 1424411793</identifier><identifier>EISBN: 1424411807</identifier><identifier>EISBN: 9781424411801</identifier><identifier>DOI: 10.1109/CVPR.2007.383436</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayesian methods ; Computer errors ; Data engineering ; Labeling ; Lighting ; Pollution measurement ; Robustness ; Systems engineering and theory ; Target tracking ; Time measurement</subject><ispartof>2007 IEEE Conference on Computer Vision and Pattern Recognition, 2007, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4270434$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4270434$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jixu Chen</creatorcontrib><creatorcontrib>Qiang Ji</creatorcontrib><title>Online Spatial-temporal Data Fusion for Robust Adaptive Tracking</title><title>2007 IEEE Conference on Computer Vision and Pattern Recognition</title><addtitle>CVPR</addtitle><description>One problem with the adaptive tracking is that the data that are used to train the new target model often contain errors and these errors will affect the quality of the new target model. As time passes by, these errors will accumulate and eventually lead the tracker to drift away. In this paper, we propose a new method based on online data fusion to alleviate this tracking drift problem. Based on combining the spatial and temporal data through a dynamic Bayesian network, the proposed method can improve the quality of online data labeling, therefore minimizing the error associated with model updating and alleviating the tracking drift problem. Experiments show the proposed method significantly improves the performance of an existing adaptive tracking method.</description><subject>Bayesian methods</subject><subject>Computer errors</subject><subject>Data engineering</subject><subject>Labeling</subject><subject>Lighting</subject><subject>Pollution measurement</subject><subject>Robustness</subject><subject>Systems engineering and theory</subject><subject>Target tracking</subject><subject>Time measurement</subject><issn>1063-6919</issn><isbn>9781424411795</isbn><isbn>1424411793</isbn><isbn>1424411807</isbn><isbn>9781424411801</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkF1LwzAYhSMqOGfvBW_yB1rzJmk-7hzVqTCYzOLteNsmEu3a0maC_96COzeHBw7PxSHkFlgGwOx98fG2yzhjOhNGSKHOyDVILiWAYfqcJFabE2ubX5AFMCVSZcFekWSavtgcM09zsyAP264NnaPvA8aAbRrdYehHbOkjRqTr4xT6jvp-pLu-Ok6RrhocYvhxtByx_g7d5w259NhOLjn1kpTrp7J4STfb59ditUmDZTHldcMbjo0SzpoauGO2Etxo9HmNrAFprZNYCQncAHhUOZOoufO5MuArFEty968Nzrn9MIYDjr97yTWT8wN_OFRLmQ</recordid><startdate>200706</startdate><enddate>200706</enddate><creator>Jixu Chen</creator><creator>Qiang Ji</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200706</creationdate><title>Online Spatial-temporal Data Fusion for Robust Adaptive Tracking</title><author>Jixu Chen ; Qiang Ji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-2cd2d2ad63e98c12e09b3287af5ca0d1499e4ab3412811fa6504a72ef5681fba3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Bayesian methods</topic><topic>Computer errors</topic><topic>Data engineering</topic><topic>Labeling</topic><topic>Lighting</topic><topic>Pollution measurement</topic><topic>Robustness</topic><topic>Systems engineering and theory</topic><topic>Target tracking</topic><topic>Time measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Jixu Chen</creatorcontrib><creatorcontrib>Qiang Ji</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jixu Chen</au><au>Qiang Ji</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Online Spatial-temporal Data Fusion for Robust Adaptive Tracking</atitle><btitle>2007 IEEE Conference on Computer Vision and Pattern Recognition</btitle><stitle>CVPR</stitle><date>2007-06</date><risdate>2007</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1063-6919</issn><isbn>9781424411795</isbn><isbn>1424411793</isbn><eisbn>1424411807</eisbn><eisbn>9781424411801</eisbn><abstract>One problem with the adaptive tracking is that the data that are used to train the new target model often contain errors and these errors will affect the quality of the new target model. As time passes by, these errors will accumulate and eventually lead the tracker to drift away. In this paper, we propose a new method based on online data fusion to alleviate this tracking drift problem. Based on combining the spatial and temporal data through a dynamic Bayesian network, the proposed method can improve the quality of online data labeling, therefore minimizing the error associated with model updating and alleviating the tracking drift problem. Experiments show the proposed method significantly improves the performance of an existing adaptive tracking method.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.2007.383436</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6919
ispartof 2007 IEEE Conference on Computer Vision and Pattern Recognition, 2007, p.1-8
issn 1063-6919
language eng
recordid cdi_ieee_primary_4270434
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bayesian methods
Computer errors
Data engineering
Labeling
Lighting
Pollution measurement
Robustness
Systems engineering and theory
Target tracking
Time measurement
title Online Spatial-temporal Data Fusion for Robust Adaptive Tracking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T18%3A29%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Online%20Spatial-temporal%20Data%20Fusion%20for%20Robust%20Adaptive%20Tracking&rft.btitle=2007%20IEEE%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition&rft.au=Jixu%20Chen&rft.date=2007-06&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1063-6919&rft.isbn=9781424411795&rft.isbn_list=1424411793&rft_id=info:doi/10.1109/CVPR.2007.383436&rft_dat=%3Cieee_6IE%3E4270434%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424411807&rft.eisbn_list=9781424411801&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4270434&rfr_iscdi=true