One-class Machine Learning for Brain Activation Detection

Machine learning methods, such as support vector machine (SVM), have been applied to fMRI data analysis, where most studies focus on supervised detection and classification of cognitive states. In this work, we study the general fMRI activation detection using SVM in an unsupervised way instead of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xiaomu Song, Iordanescu, G., Wyrwicz, A.M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Xiaomu Song
Iordanescu, G.
Wyrwicz, A.M.
description Machine learning methods, such as support vector machine (SVM), have been applied to fMRI data analysis, where most studies focus on supervised detection and classification of cognitive states. In this work, we study the general fMRI activation detection using SVM in an unsupervised way instead of the classification of cognitive states. Specifically, activation detection is formulated as an outlier (activated voxels) detection problem of the one-class support vector machine (OCSVM). An OCSVM implementation, v-SVM, is used where parameter v controls the outlier ratio, and is usually unknown. We propose a detection method that is not sensitive to v randomly set within a range known a priori. In cases that this range is also unknown, we consider v estimation using geometry and texture features. Results from both synthetic and experimental data demonstrate the effectiveness of the proposed methods.
doi_str_mv 10.1109/CVPR.2007.383339
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4270337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4270337</ieee_id><sourcerecordid>4270337</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-54070ae8b6895f797b5ed8b50df8c3f3619bae017d19dc89caa0d059f0388eb13</originalsourceid><addsrcrecordid>eNotjN9LwzAUhSMqOGffBV_yD7Te2zRN7uOs8wdUJjJ8HWl6o5GZSVsE_3sn7ryc78DHEeISoUAEum5en1-KEsAUyiql6EicY1VWFaIFcywyMvawDekTMUOoVV4T0pnIxvED9rF7VduZoFXi3G_dOMon599jYtmyG1JMbzLsBnkzuJjkwk_x201xl-QtT-z_6EKcBrcdOTv0XKzvluvmIW9X94_Nos0jwZTrCgw4tl1tSQdDptPc205DH6xXQdVInWNA0yP13pJ3DnrQFEBZyx2qubj6v43MvPka4qcbfjZVaUApo34BpIxI8A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>One-class Machine Learning for Brain Activation Detection</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xiaomu Song ; Iordanescu, G. ; Wyrwicz, A.M.</creator><creatorcontrib>Xiaomu Song ; Iordanescu, G. ; Wyrwicz, A.M.</creatorcontrib><description>Machine learning methods, such as support vector machine (SVM), have been applied to fMRI data analysis, where most studies focus on supervised detection and classification of cognitive states. In this work, we study the general fMRI activation detection using SVM in an unsupervised way instead of the classification of cognitive states. Specifically, activation detection is formulated as an outlier (activated voxels) detection problem of the one-class support vector machine (OCSVM). An OCSVM implementation, v-SVM, is used where parameter v controls the outlier ratio, and is usually unknown. We propose a detection method that is not sensitive to v randomly set within a range known a priori. In cases that this range is also unknown, we consider v estimation using geometry and texture features. Results from both synthetic and experimental data demonstrate the effectiveness of the proposed methods.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 9781424411795</identifier><identifier>ISBN: 1424411793</identifier><identifier>EISBN: 1424411807</identifier><identifier>EISBN: 9781424411801</identifier><identifier>DOI: 10.1109/CVPR.2007.383339</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data analysis ; Geometry ; Hemodynamics ; Independent component analysis ; Machine learning ; Noise level ; Principal component analysis ; Radiology ; Support vector machine classification ; Support vector machines</subject><ispartof>2007 IEEE Conference on Computer Vision and Pattern Recognition, 2007, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4270337$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4270337$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiaomu Song</creatorcontrib><creatorcontrib>Iordanescu, G.</creatorcontrib><creatorcontrib>Wyrwicz, A.M.</creatorcontrib><title>One-class Machine Learning for Brain Activation Detection</title><title>2007 IEEE Conference on Computer Vision and Pattern Recognition</title><addtitle>CVPR</addtitle><description>Machine learning methods, such as support vector machine (SVM), have been applied to fMRI data analysis, where most studies focus on supervised detection and classification of cognitive states. In this work, we study the general fMRI activation detection using SVM in an unsupervised way instead of the classification of cognitive states. Specifically, activation detection is formulated as an outlier (activated voxels) detection problem of the one-class support vector machine (OCSVM). An OCSVM implementation, v-SVM, is used where parameter v controls the outlier ratio, and is usually unknown. We propose a detection method that is not sensitive to v randomly set within a range known a priori. In cases that this range is also unknown, we consider v estimation using geometry and texture features. Results from both synthetic and experimental data demonstrate the effectiveness of the proposed methods.</description><subject>Data analysis</subject><subject>Geometry</subject><subject>Hemodynamics</subject><subject>Independent component analysis</subject><subject>Machine learning</subject><subject>Noise level</subject><subject>Principal component analysis</subject><subject>Radiology</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><issn>1063-6919</issn><isbn>9781424411795</isbn><isbn>1424411793</isbn><isbn>1424411807</isbn><isbn>9781424411801</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjN9LwzAUhSMqOGffBV_yD7Te2zRN7uOs8wdUJjJ8HWl6o5GZSVsE_3sn7ryc78DHEeISoUAEum5en1-KEsAUyiql6EicY1VWFaIFcywyMvawDekTMUOoVV4T0pnIxvED9rF7VduZoFXi3G_dOMon599jYtmyG1JMbzLsBnkzuJjkwk_x201xl-QtT-z_6EKcBrcdOTv0XKzvluvmIW9X94_Nos0jwZTrCgw4tl1tSQdDptPc205DH6xXQdVInWNA0yP13pJ3DnrQFEBZyx2qubj6v43MvPka4qcbfjZVaUApo34BpIxI8A</recordid><startdate>200706</startdate><enddate>200706</enddate><creator>Xiaomu Song</creator><creator>Iordanescu, G.</creator><creator>Wyrwicz, A.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200706</creationdate><title>One-class Machine Learning for Brain Activation Detection</title><author>Xiaomu Song ; Iordanescu, G. ; Wyrwicz, A.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-54070ae8b6895f797b5ed8b50df8c3f3619bae017d19dc89caa0d059f0388eb13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Data analysis</topic><topic>Geometry</topic><topic>Hemodynamics</topic><topic>Independent component analysis</topic><topic>Machine learning</topic><topic>Noise level</topic><topic>Principal component analysis</topic><topic>Radiology</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiaomu Song</creatorcontrib><creatorcontrib>Iordanescu, G.</creatorcontrib><creatorcontrib>Wyrwicz, A.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiaomu Song</au><au>Iordanescu, G.</au><au>Wyrwicz, A.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>One-class Machine Learning for Brain Activation Detection</atitle><btitle>2007 IEEE Conference on Computer Vision and Pattern Recognition</btitle><stitle>CVPR</stitle><date>2007-06</date><risdate>2007</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1063-6919</issn><isbn>9781424411795</isbn><isbn>1424411793</isbn><eisbn>1424411807</eisbn><eisbn>9781424411801</eisbn><abstract>Machine learning methods, such as support vector machine (SVM), have been applied to fMRI data analysis, where most studies focus on supervised detection and classification of cognitive states. In this work, we study the general fMRI activation detection using SVM in an unsupervised way instead of the classification of cognitive states. Specifically, activation detection is formulated as an outlier (activated voxels) detection problem of the one-class support vector machine (OCSVM). An OCSVM implementation, v-SVM, is used where parameter v controls the outlier ratio, and is usually unknown. We propose a detection method that is not sensitive to v randomly set within a range known a priori. In cases that this range is also unknown, we consider v estimation using geometry and texture features. Results from both synthetic and experimental data demonstrate the effectiveness of the proposed methods.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.2007.383339</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6919
ispartof 2007 IEEE Conference on Computer Vision and Pattern Recognition, 2007, p.1-6
issn 1063-6919
language eng
recordid cdi_ieee_primary_4270337
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Data analysis
Geometry
Hemodynamics
Independent component analysis
Machine learning
Noise level
Principal component analysis
Radiology
Support vector machine classification
Support vector machines
title One-class Machine Learning for Brain Activation Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T04%3A35%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=One-class%20Machine%20Learning%20for%20Brain%20Activation%20Detection&rft.btitle=2007%20IEEE%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition&rft.au=Xiaomu%20Song&rft.date=2007-06&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1063-6919&rft.isbn=9781424411795&rft.isbn_list=1424411793&rft_id=info:doi/10.1109/CVPR.2007.383339&rft_dat=%3Cieee_6IE%3E4270337%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424411807&rft.eisbn_list=9781424411801&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4270337&rfr_iscdi=true