One-class Machine Learning for Brain Activation Detection
Machine learning methods, such as support vector machine (SVM), have been applied to fMRI data analysis, where most studies focus on supervised detection and classification of cognitive states. In this work, we study the general fMRI activation detection using SVM in an unsupervised way instead of t...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Xiaomu Song Iordanescu, G. Wyrwicz, A.M. |
description | Machine learning methods, such as support vector machine (SVM), have been applied to fMRI data analysis, where most studies focus on supervised detection and classification of cognitive states. In this work, we study the general fMRI activation detection using SVM in an unsupervised way instead of the classification of cognitive states. Specifically, activation detection is formulated as an outlier (activated voxels) detection problem of the one-class support vector machine (OCSVM). An OCSVM implementation, v-SVM, is used where parameter v controls the outlier ratio, and is usually unknown. We propose a detection method that is not sensitive to v randomly set within a range known a priori. In cases that this range is also unknown, we consider v estimation using geometry and texture features. Results from both synthetic and experimental data demonstrate the effectiveness of the proposed methods. |
doi_str_mv | 10.1109/CVPR.2007.383339 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4270337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4270337</ieee_id><sourcerecordid>4270337</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-54070ae8b6895f797b5ed8b50df8c3f3619bae017d19dc89caa0d059f0388eb13</originalsourceid><addsrcrecordid>eNotjN9LwzAUhSMqOGffBV_yD7Te2zRN7uOs8wdUJjJ8HWl6o5GZSVsE_3sn7ryc78DHEeISoUAEum5en1-KEsAUyiql6EicY1VWFaIFcywyMvawDekTMUOoVV4T0pnIxvED9rF7VduZoFXi3G_dOMon599jYtmyG1JMbzLsBnkzuJjkwk_x201xl-QtT-z_6EKcBrcdOTv0XKzvluvmIW9X94_Nos0jwZTrCgw4tl1tSQdDptPc205DH6xXQdVInWNA0yP13pJ3DnrQFEBZyx2qubj6v43MvPka4qcbfjZVaUApo34BpIxI8A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>One-class Machine Learning for Brain Activation Detection</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xiaomu Song ; Iordanescu, G. ; Wyrwicz, A.M.</creator><creatorcontrib>Xiaomu Song ; Iordanescu, G. ; Wyrwicz, A.M.</creatorcontrib><description>Machine learning methods, such as support vector machine (SVM), have been applied to fMRI data analysis, where most studies focus on supervised detection and classification of cognitive states. In this work, we study the general fMRI activation detection using SVM in an unsupervised way instead of the classification of cognitive states. Specifically, activation detection is formulated as an outlier (activated voxels) detection problem of the one-class support vector machine (OCSVM). An OCSVM implementation, v-SVM, is used where parameter v controls the outlier ratio, and is usually unknown. We propose a detection method that is not sensitive to v randomly set within a range known a priori. In cases that this range is also unknown, we consider v estimation using geometry and texture features. Results from both synthetic and experimental data demonstrate the effectiveness of the proposed methods.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 9781424411795</identifier><identifier>ISBN: 1424411793</identifier><identifier>EISBN: 1424411807</identifier><identifier>EISBN: 9781424411801</identifier><identifier>DOI: 10.1109/CVPR.2007.383339</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data analysis ; Geometry ; Hemodynamics ; Independent component analysis ; Machine learning ; Noise level ; Principal component analysis ; Radiology ; Support vector machine classification ; Support vector machines</subject><ispartof>2007 IEEE Conference on Computer Vision and Pattern Recognition, 2007, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4270337$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4270337$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiaomu Song</creatorcontrib><creatorcontrib>Iordanescu, G.</creatorcontrib><creatorcontrib>Wyrwicz, A.M.</creatorcontrib><title>One-class Machine Learning for Brain Activation Detection</title><title>2007 IEEE Conference on Computer Vision and Pattern Recognition</title><addtitle>CVPR</addtitle><description>Machine learning methods, such as support vector machine (SVM), have been applied to fMRI data analysis, where most studies focus on supervised detection and classification of cognitive states. In this work, we study the general fMRI activation detection using SVM in an unsupervised way instead of the classification of cognitive states. Specifically, activation detection is formulated as an outlier (activated voxels) detection problem of the one-class support vector machine (OCSVM). An OCSVM implementation, v-SVM, is used where parameter v controls the outlier ratio, and is usually unknown. We propose a detection method that is not sensitive to v randomly set within a range known a priori. In cases that this range is also unknown, we consider v estimation using geometry and texture features. Results from both synthetic and experimental data demonstrate the effectiveness of the proposed methods.</description><subject>Data analysis</subject><subject>Geometry</subject><subject>Hemodynamics</subject><subject>Independent component analysis</subject><subject>Machine learning</subject><subject>Noise level</subject><subject>Principal component analysis</subject><subject>Radiology</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><issn>1063-6919</issn><isbn>9781424411795</isbn><isbn>1424411793</isbn><isbn>1424411807</isbn><isbn>9781424411801</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjN9LwzAUhSMqOGffBV_yD7Te2zRN7uOs8wdUJjJ8HWl6o5GZSVsE_3sn7ryc78DHEeISoUAEum5en1-KEsAUyiql6EicY1VWFaIFcywyMvawDekTMUOoVV4T0pnIxvED9rF7VduZoFXi3G_dOMon599jYtmyG1JMbzLsBnkzuJjkwk_x201xl-QtT-z_6EKcBrcdOTv0XKzvluvmIW9X94_Nos0jwZTrCgw4tl1tSQdDptPc205DH6xXQdVInWNA0yP13pJ3DnrQFEBZyx2qubj6v43MvPka4qcbfjZVaUApo34BpIxI8A</recordid><startdate>200706</startdate><enddate>200706</enddate><creator>Xiaomu Song</creator><creator>Iordanescu, G.</creator><creator>Wyrwicz, A.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200706</creationdate><title>One-class Machine Learning for Brain Activation Detection</title><author>Xiaomu Song ; Iordanescu, G. ; Wyrwicz, A.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-54070ae8b6895f797b5ed8b50df8c3f3619bae017d19dc89caa0d059f0388eb13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Data analysis</topic><topic>Geometry</topic><topic>Hemodynamics</topic><topic>Independent component analysis</topic><topic>Machine learning</topic><topic>Noise level</topic><topic>Principal component analysis</topic><topic>Radiology</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiaomu Song</creatorcontrib><creatorcontrib>Iordanescu, G.</creatorcontrib><creatorcontrib>Wyrwicz, A.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiaomu Song</au><au>Iordanescu, G.</au><au>Wyrwicz, A.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>One-class Machine Learning for Brain Activation Detection</atitle><btitle>2007 IEEE Conference on Computer Vision and Pattern Recognition</btitle><stitle>CVPR</stitle><date>2007-06</date><risdate>2007</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1063-6919</issn><isbn>9781424411795</isbn><isbn>1424411793</isbn><eisbn>1424411807</eisbn><eisbn>9781424411801</eisbn><abstract>Machine learning methods, such as support vector machine (SVM), have been applied to fMRI data analysis, where most studies focus on supervised detection and classification of cognitive states. In this work, we study the general fMRI activation detection using SVM in an unsupervised way instead of the classification of cognitive states. Specifically, activation detection is formulated as an outlier (activated voxels) detection problem of the one-class support vector machine (OCSVM). An OCSVM implementation, v-SVM, is used where parameter v controls the outlier ratio, and is usually unknown. We propose a detection method that is not sensitive to v randomly set within a range known a priori. In cases that this range is also unknown, we consider v estimation using geometry and texture features. Results from both synthetic and experimental data demonstrate the effectiveness of the proposed methods.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.2007.383339</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6919 |
ispartof | 2007 IEEE Conference on Computer Vision and Pattern Recognition, 2007, p.1-6 |
issn | 1063-6919 |
language | eng |
recordid | cdi_ieee_primary_4270337 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Data analysis Geometry Hemodynamics Independent component analysis Machine learning Noise level Principal component analysis Radiology Support vector machine classification Support vector machines |
title | One-class Machine Learning for Brain Activation Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T04%3A35%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=One-class%20Machine%20Learning%20for%20Brain%20Activation%20Detection&rft.btitle=2007%20IEEE%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition&rft.au=Xiaomu%20Song&rft.date=2007-06&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1063-6919&rft.isbn=9781424411795&rft.isbn_list=1424411793&rft_id=info:doi/10.1109/CVPR.2007.383339&rft_dat=%3Cieee_6IE%3E4270337%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424411807&rft.eisbn_list=9781424411801&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4270337&rfr_iscdi=true |