Local Online Support Vector Regression for Learning Control

Support vector regression (SVR) is a class of machine learning technique that has been successfully applied to low-level learning control in robotics. Because of the large amount of computation required by SVR, however, most studies have used a batch mode. Although a recently developed online form o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Younggeun Choi, Shin-Young Cheong, Schweighofer, N.
Format: Tagungsbericht
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18
container_issue
container_start_page 13
container_title
container_volume
creator Younggeun Choi
Shin-Young Cheong
Schweighofer, N.
description Support vector regression (SVR) is a class of machine learning technique that has been successfully applied to low-level learning control in robotics. Because of the large amount of computation required by SVR, however, most studies have used a batch mode. Although a recently developed online form of SVR shows faster learning performance than batch SVR, the amount of computation required by online SVR prevent its use in real-time robot learning control, which requires short sampling time. Here, we present a novel method, Local online SVR for Learning control, or LoSVR, that extends online SVR with a windowing method. We demonstrate the performance of LoSVR in learning the inverse dynamics of both a simulated two-joint robot and a real one-link robot arm. Our results show that, in both cases, LoSVR can learn the inverse dynamics on-line faster and with a better accuracy than batch SVR.
doi_str_mv 10.1109/CIRA.2007.382883
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4269883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4269883</ieee_id><sourcerecordid>4269883</sourcerecordid><originalsourceid>FETCH-LOGICAL-i156t-24a93467ed08a83f8aaa314aae468bb16806da3c27379c3021315ec7932591083</originalsourceid><addsrcrecordid>eNo9j0tLxDAURiMiqOPsBTf5A61JbpoHroai40BhYHxshzud2yFSk5LWhf_eguLZfJzNB4exWylKKYW_rze7VamEsCU45RycsWupldbCemHP_8V5uGTLcfwQM-DBq-qKPTSpxZ5vYx8i8ZevYUh54u_UTinzHZ0yjWNIkXezNoQ5hnjidYpTTv0Nu-iwH2n5twv29vT4Wj8XzXa9qVdNEWRlpkJp9KCNpaNw6KBziAhSI5I27nCQxglzRGiVBetbEEqCrKi1HlTlpXCwYHe_v4GI9kMOn5i_91oZP8fCD-OsRos</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Local Online Support Vector Regression for Learning Control</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Younggeun Choi ; Shin-Young Cheong ; Schweighofer, N.</creator><creatorcontrib>Younggeun Choi ; Shin-Young Cheong ; Schweighofer, N.</creatorcontrib><description>Support vector regression (SVR) is a class of machine learning technique that has been successfully applied to low-level learning control in robotics. Because of the large amount of computation required by SVR, however, most studies have used a batch mode. Although a recently developed online form of SVR shows faster learning performance than batch SVR, the amount of computation required by online SVR prevent its use in real-time robot learning control, which requires short sampling time. Here, we present a novel method, Local online SVR for Learning control, or LoSVR, that extends online SVR with a windowing method. We demonstrate the performance of LoSVR in learning the inverse dynamics of both a simulated two-joint robot and a real one-link robot arm. Our results show that, in both cases, LoSVR can learn the inverse dynamics on-line faster and with a better accuracy than batch SVR.</description><identifier>ISBN: 1424407893</identifier><identifier>ISBN: 9781424407897</identifier><identifier>EISBN: 1424407907</identifier><identifier>EISBN: 9781424407903</identifier><identifier>DOI: 10.1109/CIRA.2007.382883</identifier><language>eng ; jpn</language><publisher>IEEE</publisher><subject>Computational intelligence ; Degradation ; Machine learning ; Neural networks ; Robot control ; Robotics and automation ; Sampling methods ; Support vector machine classification ; Support vector machines ; USA Councils</subject><ispartof>2007 International Symposium on Computational Intelligence in Robotics and Automation, 2007, p.13-18</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4269883$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4269883$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Younggeun Choi</creatorcontrib><creatorcontrib>Shin-Young Cheong</creatorcontrib><creatorcontrib>Schweighofer, N.</creatorcontrib><title>Local Online Support Vector Regression for Learning Control</title><title>2007 International Symposium on Computational Intelligence in Robotics and Automation</title><addtitle>CIRA</addtitle><description>Support vector regression (SVR) is a class of machine learning technique that has been successfully applied to low-level learning control in robotics. Because of the large amount of computation required by SVR, however, most studies have used a batch mode. Although a recently developed online form of SVR shows faster learning performance than batch SVR, the amount of computation required by online SVR prevent its use in real-time robot learning control, which requires short sampling time. Here, we present a novel method, Local online SVR for Learning control, or LoSVR, that extends online SVR with a windowing method. We demonstrate the performance of LoSVR in learning the inverse dynamics of both a simulated two-joint robot and a real one-link robot arm. Our results show that, in both cases, LoSVR can learn the inverse dynamics on-line faster and with a better accuracy than batch SVR.</description><subject>Computational intelligence</subject><subject>Degradation</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Robot control</subject><subject>Robotics and automation</subject><subject>Sampling methods</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><subject>USA Councils</subject><isbn>1424407893</isbn><isbn>9781424407897</isbn><isbn>1424407907</isbn><isbn>9781424407903</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9j0tLxDAURiMiqOPsBTf5A61JbpoHroai40BhYHxshzud2yFSk5LWhf_eguLZfJzNB4exWylKKYW_rze7VamEsCU45RycsWupldbCemHP_8V5uGTLcfwQM-DBq-qKPTSpxZ5vYx8i8ZevYUh54u_UTinzHZ0yjWNIkXezNoQ5hnjidYpTTv0Nu-iwH2n5twv29vT4Wj8XzXa9qVdNEWRlpkJp9KCNpaNw6KBziAhSI5I27nCQxglzRGiVBetbEEqCrKi1HlTlpXCwYHe_v4GI9kMOn5i_91oZP8fCD-OsRos</recordid><startdate>200706</startdate><enddate>200706</enddate><creator>Younggeun Choi</creator><creator>Shin-Young Cheong</creator><creator>Schweighofer, N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200706</creationdate><title>Local Online Support Vector Regression for Learning Control</title><author>Younggeun Choi ; Shin-Young Cheong ; Schweighofer, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i156t-24a93467ed08a83f8aaa314aae468bb16806da3c27379c3021315ec7932591083</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng ; jpn</language><creationdate>2007</creationdate><topic>Computational intelligence</topic><topic>Degradation</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Robot control</topic><topic>Robotics and automation</topic><topic>Sampling methods</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><topic>USA Councils</topic><toplevel>online_resources</toplevel><creatorcontrib>Younggeun Choi</creatorcontrib><creatorcontrib>Shin-Young Cheong</creatorcontrib><creatorcontrib>Schweighofer, N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Younggeun Choi</au><au>Shin-Young Cheong</au><au>Schweighofer, N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Local Online Support Vector Regression for Learning Control</atitle><btitle>2007 International Symposium on Computational Intelligence in Robotics and Automation</btitle><stitle>CIRA</stitle><date>2007-06</date><risdate>2007</risdate><spage>13</spage><epage>18</epage><pages>13-18</pages><isbn>1424407893</isbn><isbn>9781424407897</isbn><eisbn>1424407907</eisbn><eisbn>9781424407903</eisbn><abstract>Support vector regression (SVR) is a class of machine learning technique that has been successfully applied to low-level learning control in robotics. Because of the large amount of computation required by SVR, however, most studies have used a batch mode. Although a recently developed online form of SVR shows faster learning performance than batch SVR, the amount of computation required by online SVR prevent its use in real-time robot learning control, which requires short sampling time. Here, we present a novel method, Local online SVR for Learning control, or LoSVR, that extends online SVR with a windowing method. We demonstrate the performance of LoSVR in learning the inverse dynamics of both a simulated two-joint robot and a real one-link robot arm. Our results show that, in both cases, LoSVR can learn the inverse dynamics on-line faster and with a better accuracy than batch SVR.</abstract><pub>IEEE</pub><doi>10.1109/CIRA.2007.382883</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424407893
ispartof 2007 International Symposium on Computational Intelligence in Robotics and Automation, 2007, p.13-18
issn
language eng ; jpn
recordid cdi_ieee_primary_4269883
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computational intelligence
Degradation
Machine learning
Neural networks
Robot control
Robotics and automation
Sampling methods
Support vector machine classification
Support vector machines
USA Councils
title Local Online Support Vector Regression for Learning Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T04%3A53%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Local%20Online%20Support%20Vector%20Regression%20for%20Learning%20Control&rft.btitle=2007%20International%20Symposium%20on%20Computational%20Intelligence%20in%20Robotics%20and%20Automation&rft.au=Younggeun%20Choi&rft.date=2007-06&rft.spage=13&rft.epage=18&rft.pages=13-18&rft.isbn=1424407893&rft.isbn_list=9781424407897&rft_id=info:doi/10.1109/CIRA.2007.382883&rft_dat=%3Cieee_6IE%3E4269883%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424407907&rft.eisbn_list=9781424407903&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4269883&rfr_iscdi=true