HEAD: The Human Encephalon Automatic Delimiter

In this paper we present HEAD, the Human Encephalon Automatic Delimiter, a new and efficient method for skull-stripping in T1-weighted MRI that combines an unique histogram analysis with binary mathematical morphology. In our experiments we use real images with highly variable noise ratios and inten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Balan, A.G.R., Traina, A.J.M., Ribeiro, M.X., Marques, P.M.A., Traina, C.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 176
container_issue
container_start_page 171
container_title
container_volume
creator Balan, A.G.R.
Traina, A.J.M.
Ribeiro, M.X.
Marques, P.M.A.
Traina, C.
description In this paper we present HEAD, the Human Encephalon Automatic Delimiter, a new and efficient method for skull-stripping in T1-weighted MRI that combines an unique histogram analysis with binary mathematical morphology. In our experiments we use real images with highly variable noise ratios and intensity non-uniformity. We evaluate our results based on manually generated true masks and the well known Jaccard metric, achieving accuracy close to 99%. We compare our method with the popular Brain Extractor Surface algorithm (BSE), which in the same experiments achieved less than 95% of accuracy.
doi_str_mv 10.1109/CBMS.2007.54
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4262645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4262645</ieee_id><sourcerecordid>4262645</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-6b9a69437f9f31a9a37ad47a3a765684ac3e1e6bef41a3952d185f59beb17a8a3</originalsourceid><addsrcrecordid>eNotjsFOg0AUADdRE5vKzZsXfgDct7tvl_WGFMWkxoP13DzoI10DtAF68O8l0bnMbTJC3INMAaR_LJ7fP1MlpUvRXInIu0w661F5if5arEBanThQeCuiafqWCwYhQ1yJtCrzzVO8O3JcXXoa4nJo-Hyk7jTE-WU-9TSHJt5wF_ow83gnblrqJo7-vRZfL-WuqJLtx-tbkW-TAA7nxNaerDfatb7VQJ60o4NxpMlZtJmhRjOwrbk1QHoZPSw3Lfqaa3CUkV6Lh79uYOb9eQw9jT97o6yyBvUv0ehBfw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>HEAD: The Human Encephalon Automatic Delimiter</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Balan, A.G.R. ; Traina, A.J.M. ; Ribeiro, M.X. ; Marques, P.M.A. ; Traina, C.</creator><creatorcontrib>Balan, A.G.R. ; Traina, A.J.M. ; Ribeiro, M.X. ; Marques, P.M.A. ; Traina, C.</creatorcontrib><description>In this paper we present HEAD, the Human Encephalon Automatic Delimiter, a new and efficient method for skull-stripping in T1-weighted MRI that combines an unique histogram analysis with binary mathematical morphology. In our experiments we use real images with highly variable noise ratios and intensity non-uniformity. We evaluate our results based on manually generated true masks and the well known Jaccard metric, achieving accuracy close to 99%. We compare our method with the popular Brain Extractor Surface algorithm (BSE), which in the same experiments achieved less than 95% of accuracy.</description><identifier>ISSN: 1063-7125</identifier><identifier>ISBN: 9780769529059</identifier><identifier>ISBN: 0769529054</identifier><identifier>DOI: 10.1109/CBMS.2007.54</identifier><language>eng</language><publisher>IEEE</publisher><subject>Alzheimer's disease ; Biomedical imaging ; Head ; Histograms ; Humans ; Image edge detection ; Lesions ; Magnetic resonance imaging ; Signal to noise ratio ; Surface morphology</subject><ispartof>Twentieth IEEE International Symposium on Computer-Based Medical Systems (CBMS'07), 2007, p.171-176</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4262645$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4262645$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Balan, A.G.R.</creatorcontrib><creatorcontrib>Traina, A.J.M.</creatorcontrib><creatorcontrib>Ribeiro, M.X.</creatorcontrib><creatorcontrib>Marques, P.M.A.</creatorcontrib><creatorcontrib>Traina, C.</creatorcontrib><title>HEAD: The Human Encephalon Automatic Delimiter</title><title>Twentieth IEEE International Symposium on Computer-Based Medical Systems (CBMS'07)</title><addtitle>CBMS</addtitle><description>In this paper we present HEAD, the Human Encephalon Automatic Delimiter, a new and efficient method for skull-stripping in T1-weighted MRI that combines an unique histogram analysis with binary mathematical morphology. In our experiments we use real images with highly variable noise ratios and intensity non-uniformity. We evaluate our results based on manually generated true masks and the well known Jaccard metric, achieving accuracy close to 99%. We compare our method with the popular Brain Extractor Surface algorithm (BSE), which in the same experiments achieved less than 95% of accuracy.</description><subject>Alzheimer's disease</subject><subject>Biomedical imaging</subject><subject>Head</subject><subject>Histograms</subject><subject>Humans</subject><subject>Image edge detection</subject><subject>Lesions</subject><subject>Magnetic resonance imaging</subject><subject>Signal to noise ratio</subject><subject>Surface morphology</subject><issn>1063-7125</issn><isbn>9780769529059</isbn><isbn>0769529054</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjsFOg0AUADdRE5vKzZsXfgDct7tvl_WGFMWkxoP13DzoI10DtAF68O8l0bnMbTJC3INMAaR_LJ7fP1MlpUvRXInIu0w661F5if5arEBanThQeCuiafqWCwYhQ1yJtCrzzVO8O3JcXXoa4nJo-Hyk7jTE-WU-9TSHJt5wF_ow83gnblrqJo7-vRZfL-WuqJLtx-tbkW-TAA7nxNaerDfatb7VQJ60o4NxpMlZtJmhRjOwrbk1QHoZPSw3Lfqaa3CUkV6Lh79uYOb9eQw9jT97o6yyBvUv0ehBfw</recordid><startdate>200706</startdate><enddate>200706</enddate><creator>Balan, A.G.R.</creator><creator>Traina, A.J.M.</creator><creator>Ribeiro, M.X.</creator><creator>Marques, P.M.A.</creator><creator>Traina, C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200706</creationdate><title>HEAD: The Human Encephalon Automatic Delimiter</title><author>Balan, A.G.R. ; Traina, A.J.M. ; Ribeiro, M.X. ; Marques, P.M.A. ; Traina, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-6b9a69437f9f31a9a37ad47a3a765684ac3e1e6bef41a3952d185f59beb17a8a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Alzheimer's disease</topic><topic>Biomedical imaging</topic><topic>Head</topic><topic>Histograms</topic><topic>Humans</topic><topic>Image edge detection</topic><topic>Lesions</topic><topic>Magnetic resonance imaging</topic><topic>Signal to noise ratio</topic><topic>Surface morphology</topic><toplevel>online_resources</toplevel><creatorcontrib>Balan, A.G.R.</creatorcontrib><creatorcontrib>Traina, A.J.M.</creatorcontrib><creatorcontrib>Ribeiro, M.X.</creatorcontrib><creatorcontrib>Marques, P.M.A.</creatorcontrib><creatorcontrib>Traina, C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Balan, A.G.R.</au><au>Traina, A.J.M.</au><au>Ribeiro, M.X.</au><au>Marques, P.M.A.</au><au>Traina, C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>HEAD: The Human Encephalon Automatic Delimiter</atitle><btitle>Twentieth IEEE International Symposium on Computer-Based Medical Systems (CBMS'07)</btitle><stitle>CBMS</stitle><date>2007-06</date><risdate>2007</risdate><spage>171</spage><epage>176</epage><pages>171-176</pages><issn>1063-7125</issn><isbn>9780769529059</isbn><isbn>0769529054</isbn><abstract>In this paper we present HEAD, the Human Encephalon Automatic Delimiter, a new and efficient method for skull-stripping in T1-weighted MRI that combines an unique histogram analysis with binary mathematical morphology. In our experiments we use real images with highly variable noise ratios and intensity non-uniformity. We evaluate our results based on manually generated true masks and the well known Jaccard metric, achieving accuracy close to 99%. We compare our method with the popular Brain Extractor Surface algorithm (BSE), which in the same experiments achieved less than 95% of accuracy.</abstract><pub>IEEE</pub><doi>10.1109/CBMS.2007.54</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-7125
ispartof Twentieth IEEE International Symposium on Computer-Based Medical Systems (CBMS'07), 2007, p.171-176
issn 1063-7125
language eng
recordid cdi_ieee_primary_4262645
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Alzheimer's disease
Biomedical imaging
Head
Histograms
Humans
Image edge detection
Lesions
Magnetic resonance imaging
Signal to noise ratio
Surface morphology
title HEAD: The Human Encephalon Automatic Delimiter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A50%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=HEAD:%20The%20Human%20Encephalon%20Automatic%20Delimiter&rft.btitle=Twentieth%20IEEE%20International%20Symposium%20on%20Computer-Based%20Medical%20Systems%20(CBMS'07)&rft.au=Balan,%20A.G.R.&rft.date=2007-06&rft.spage=171&rft.epage=176&rft.pages=171-176&rft.issn=1063-7125&rft.isbn=9780769529059&rft.isbn_list=0769529054&rft_id=info:doi/10.1109/CBMS.2007.54&rft_dat=%3Cieee_6IE%3E4262645%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4262645&rfr_iscdi=true