HEAD: The Human Encephalon Automatic Delimiter
In this paper we present HEAD, the Human Encephalon Automatic Delimiter, a new and efficient method for skull-stripping in T1-weighted MRI that combines an unique histogram analysis with binary mathematical morphology. In our experiments we use real images with highly variable noise ratios and inten...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 176 |
---|---|
container_issue | |
container_start_page | 171 |
container_title | |
container_volume | |
creator | Balan, A.G.R. Traina, A.J.M. Ribeiro, M.X. Marques, P.M.A. Traina, C. |
description | In this paper we present HEAD, the Human Encephalon Automatic Delimiter, a new and efficient method for skull-stripping in T1-weighted MRI that combines an unique histogram analysis with binary mathematical morphology. In our experiments we use real images with highly variable noise ratios and intensity non-uniformity. We evaluate our results based on manually generated true masks and the well known Jaccard metric, achieving accuracy close to 99%. We compare our method with the popular Brain Extractor Surface algorithm (BSE), which in the same experiments achieved less than 95% of accuracy. |
doi_str_mv | 10.1109/CBMS.2007.54 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4262645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4262645</ieee_id><sourcerecordid>4262645</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-6b9a69437f9f31a9a37ad47a3a765684ac3e1e6bef41a3952d185f59beb17a8a3</originalsourceid><addsrcrecordid>eNotjsFOg0AUADdRE5vKzZsXfgDct7tvl_WGFMWkxoP13DzoI10DtAF68O8l0bnMbTJC3INMAaR_LJ7fP1MlpUvRXInIu0w661F5if5arEBanThQeCuiafqWCwYhQ1yJtCrzzVO8O3JcXXoa4nJo-Hyk7jTE-WU-9TSHJt5wF_ow83gnblrqJo7-vRZfL-WuqJLtx-tbkW-TAA7nxNaerDfatb7VQJ60o4NxpMlZtJmhRjOwrbk1QHoZPSw3Lfqaa3CUkV6Lh79uYOb9eQw9jT97o6yyBvUv0ehBfw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>HEAD: The Human Encephalon Automatic Delimiter</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Balan, A.G.R. ; Traina, A.J.M. ; Ribeiro, M.X. ; Marques, P.M.A. ; Traina, C.</creator><creatorcontrib>Balan, A.G.R. ; Traina, A.J.M. ; Ribeiro, M.X. ; Marques, P.M.A. ; Traina, C.</creatorcontrib><description>In this paper we present HEAD, the Human Encephalon Automatic Delimiter, a new and efficient method for skull-stripping in T1-weighted MRI that combines an unique histogram analysis with binary mathematical morphology. In our experiments we use real images with highly variable noise ratios and intensity non-uniformity. We evaluate our results based on manually generated true masks and the well known Jaccard metric, achieving accuracy close to 99%. We compare our method with the popular Brain Extractor Surface algorithm (BSE), which in the same experiments achieved less than 95% of accuracy.</description><identifier>ISSN: 1063-7125</identifier><identifier>ISBN: 9780769529059</identifier><identifier>ISBN: 0769529054</identifier><identifier>DOI: 10.1109/CBMS.2007.54</identifier><language>eng</language><publisher>IEEE</publisher><subject>Alzheimer's disease ; Biomedical imaging ; Head ; Histograms ; Humans ; Image edge detection ; Lesions ; Magnetic resonance imaging ; Signal to noise ratio ; Surface morphology</subject><ispartof>Twentieth IEEE International Symposium on Computer-Based Medical Systems (CBMS'07), 2007, p.171-176</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4262645$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4262645$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Balan, A.G.R.</creatorcontrib><creatorcontrib>Traina, A.J.M.</creatorcontrib><creatorcontrib>Ribeiro, M.X.</creatorcontrib><creatorcontrib>Marques, P.M.A.</creatorcontrib><creatorcontrib>Traina, C.</creatorcontrib><title>HEAD: The Human Encephalon Automatic Delimiter</title><title>Twentieth IEEE International Symposium on Computer-Based Medical Systems (CBMS'07)</title><addtitle>CBMS</addtitle><description>In this paper we present HEAD, the Human Encephalon Automatic Delimiter, a new and efficient method for skull-stripping in T1-weighted MRI that combines an unique histogram analysis with binary mathematical morphology. In our experiments we use real images with highly variable noise ratios and intensity non-uniformity. We evaluate our results based on manually generated true masks and the well known Jaccard metric, achieving accuracy close to 99%. We compare our method with the popular Brain Extractor Surface algorithm (BSE), which in the same experiments achieved less than 95% of accuracy.</description><subject>Alzheimer's disease</subject><subject>Biomedical imaging</subject><subject>Head</subject><subject>Histograms</subject><subject>Humans</subject><subject>Image edge detection</subject><subject>Lesions</subject><subject>Magnetic resonance imaging</subject><subject>Signal to noise ratio</subject><subject>Surface morphology</subject><issn>1063-7125</issn><isbn>9780769529059</isbn><isbn>0769529054</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjsFOg0AUADdRE5vKzZsXfgDct7tvl_WGFMWkxoP13DzoI10DtAF68O8l0bnMbTJC3INMAaR_LJ7fP1MlpUvRXInIu0w661F5if5arEBanThQeCuiafqWCwYhQ1yJtCrzzVO8O3JcXXoa4nJo-Hyk7jTE-WU-9TSHJt5wF_ow83gnblrqJo7-vRZfL-WuqJLtx-tbkW-TAA7nxNaerDfatb7VQJ60o4NxpMlZtJmhRjOwrbk1QHoZPSw3Lfqaa3CUkV6Lh79uYOb9eQw9jT97o6yyBvUv0ehBfw</recordid><startdate>200706</startdate><enddate>200706</enddate><creator>Balan, A.G.R.</creator><creator>Traina, A.J.M.</creator><creator>Ribeiro, M.X.</creator><creator>Marques, P.M.A.</creator><creator>Traina, C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200706</creationdate><title>HEAD: The Human Encephalon Automatic Delimiter</title><author>Balan, A.G.R. ; Traina, A.J.M. ; Ribeiro, M.X. ; Marques, P.M.A. ; Traina, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-6b9a69437f9f31a9a37ad47a3a765684ac3e1e6bef41a3952d185f59beb17a8a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Alzheimer's disease</topic><topic>Biomedical imaging</topic><topic>Head</topic><topic>Histograms</topic><topic>Humans</topic><topic>Image edge detection</topic><topic>Lesions</topic><topic>Magnetic resonance imaging</topic><topic>Signal to noise ratio</topic><topic>Surface morphology</topic><toplevel>online_resources</toplevel><creatorcontrib>Balan, A.G.R.</creatorcontrib><creatorcontrib>Traina, A.J.M.</creatorcontrib><creatorcontrib>Ribeiro, M.X.</creatorcontrib><creatorcontrib>Marques, P.M.A.</creatorcontrib><creatorcontrib>Traina, C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Balan, A.G.R.</au><au>Traina, A.J.M.</au><au>Ribeiro, M.X.</au><au>Marques, P.M.A.</au><au>Traina, C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>HEAD: The Human Encephalon Automatic Delimiter</atitle><btitle>Twentieth IEEE International Symposium on Computer-Based Medical Systems (CBMS'07)</btitle><stitle>CBMS</stitle><date>2007-06</date><risdate>2007</risdate><spage>171</spage><epage>176</epage><pages>171-176</pages><issn>1063-7125</issn><isbn>9780769529059</isbn><isbn>0769529054</isbn><abstract>In this paper we present HEAD, the Human Encephalon Automatic Delimiter, a new and efficient method for skull-stripping in T1-weighted MRI that combines an unique histogram analysis with binary mathematical morphology. In our experiments we use real images with highly variable noise ratios and intensity non-uniformity. We evaluate our results based on manually generated true masks and the well known Jaccard metric, achieving accuracy close to 99%. We compare our method with the popular Brain Extractor Surface algorithm (BSE), which in the same experiments achieved less than 95% of accuracy.</abstract><pub>IEEE</pub><doi>10.1109/CBMS.2007.54</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-7125 |
ispartof | Twentieth IEEE International Symposium on Computer-Based Medical Systems (CBMS'07), 2007, p.171-176 |
issn | 1063-7125 |
language | eng |
recordid | cdi_ieee_primary_4262645 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Alzheimer's disease Biomedical imaging Head Histograms Humans Image edge detection Lesions Magnetic resonance imaging Signal to noise ratio Surface morphology |
title | HEAD: The Human Encephalon Automatic Delimiter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A50%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=HEAD:%20The%20Human%20Encephalon%20Automatic%20Delimiter&rft.btitle=Twentieth%20IEEE%20International%20Symposium%20on%20Computer-Based%20Medical%20Systems%20(CBMS'07)&rft.au=Balan,%20A.G.R.&rft.date=2007-06&rft.spage=171&rft.epage=176&rft.pages=171-176&rft.issn=1063-7125&rft.isbn=9780769529059&rft.isbn_list=0769529054&rft_id=info:doi/10.1109/CBMS.2007.54&rft_dat=%3Cieee_6IE%3E4262645%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4262645&rfr_iscdi=true |