Microarray Classification and Rule Based Cancer Identification
Microarray analysis creates a clear scenario for the complete transcription profile of cells that facilitate drug and therapeutics development, disease diagnosis and enable us to take an in depth look at cell biology. One of the key challenges in microarray analysis, especially in cancerous gene exp...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 46 |
---|---|
container_issue | |
container_start_page | 43 |
container_title | |
container_volume | |
creator | Nahar, J. Chen, Y.-P.P. Shawkat Ali, A.B.M. |
description | Microarray analysis creates a clear scenario for the complete transcription profile of cells that facilitate drug and therapeutics development, disease diagnosis and enable us to take an in depth look at cell biology. One of the key challenges in microarray analysis, especially in cancerous gene expression profiles, is to identify genes or groups of genes that are highly responsible for the existence of a tumor in a cell. Our proposed modified algorithm support vector machine (SVM) is used to classify cancer related 5 microarray data and observed improved performance than previously used Interesting rule group (IRG), classification based on associations (CBA), and even a different version of SVM algorithm. Finally we use entropy measure through rule based learning algorithm to extract the responsible genes causes for cancer for each microarray problem. The rules are generated with higher acceptability. |
doi_str_mv | 10.1109/ICICT.2007.375339 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4261362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4261362</ieee_id><sourcerecordid>4261362</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-71ac5006f0b2e744bb4bcf7d7d782e69a5c92e6b9446fc3d72d1f0e0ac4138d33</originalsourceid><addsrcrecordid>eNo9jM1KxDAUhQMiKGMfQNzkBVpvctOm2Qga_CmMCNL9cJsfiNSOJHUxb29B8ZzFxweHw9i1gEYIMLeDHezYSADdoG4RzRmrjO5Nr1BupvCCVaV8wBY0rcD2kt29JpePlDOduJ2plBSTozUdF06L5-_fc-APVILnlhYXMh98WNb_0RU7jzSXUP1xx8anx9G-1Pu358He7-tkYK21INcCdBEmGbRS06QmF7Xf2svQGWqd2TgZpbro0GvpRYQA5JTA3iPu2M3vbQohHL5y-qR8OijZCewk_gC0KUeT</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Microarray Classification and Rule Based Cancer Identification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Nahar, J. ; Chen, Y.-P.P. ; Shawkat Ali, A.B.M.</creator><creatorcontrib>Nahar, J. ; Chen, Y.-P.P. ; Shawkat Ali, A.B.M.</creatorcontrib><description>Microarray analysis creates a clear scenario for the complete transcription profile of cells that facilitate drug and therapeutics development, disease diagnosis and enable us to take an in depth look at cell biology. One of the key challenges in microarray analysis, especially in cancerous gene expression profiles, is to identify genes or groups of genes that are highly responsible for the existence of a tumor in a cell. Our proposed modified algorithm support vector machine (SVM) is used to classify cancer related 5 microarray data and observed improved performance than previously used Interesting rule group (IRG), classification based on associations (CBA), and even a different version of SVM algorithm. Finally we use entropy measure through rule based learning algorithm to extract the responsible genes causes for cancer for each microarray problem. The rules are generated with higher acceptability.</description><identifier>ISBN: 9789843233943</identifier><identifier>ISBN: 9843233948</identifier><identifier>DOI: 10.1109/ICICT.2007.375339</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological cells ; Cancer ; Cells (biology) ; Diseases ; Drugs ; Entropy ; Gene expression ; Neoplasms ; Support vector machine classification ; Support vector machines</subject><ispartof>2007 International Conference on Information and Communication Technology, 2007, p.43-46</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4261362$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4261362$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nahar, J.</creatorcontrib><creatorcontrib>Chen, Y.-P.P.</creatorcontrib><creatorcontrib>Shawkat Ali, A.B.M.</creatorcontrib><title>Microarray Classification and Rule Based Cancer Identification</title><title>2007 International Conference on Information and Communication Technology</title><addtitle>ICICT</addtitle><description>Microarray analysis creates a clear scenario for the complete transcription profile of cells that facilitate drug and therapeutics development, disease diagnosis and enable us to take an in depth look at cell biology. One of the key challenges in microarray analysis, especially in cancerous gene expression profiles, is to identify genes or groups of genes that are highly responsible for the existence of a tumor in a cell. Our proposed modified algorithm support vector machine (SVM) is used to classify cancer related 5 microarray data and observed improved performance than previously used Interesting rule group (IRG), classification based on associations (CBA), and even a different version of SVM algorithm. Finally we use entropy measure through rule based learning algorithm to extract the responsible genes causes for cancer for each microarray problem. The rules are generated with higher acceptability.</description><subject>Biological cells</subject><subject>Cancer</subject><subject>Cells (biology)</subject><subject>Diseases</subject><subject>Drugs</subject><subject>Entropy</subject><subject>Gene expression</subject><subject>Neoplasms</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><isbn>9789843233943</isbn><isbn>9843233948</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9jM1KxDAUhQMiKGMfQNzkBVpvctOm2Qga_CmMCNL9cJsfiNSOJHUxb29B8ZzFxweHw9i1gEYIMLeDHezYSADdoG4RzRmrjO5Nr1BupvCCVaV8wBY0rcD2kt29JpePlDOduJ2plBSTozUdF06L5-_fc-APVILnlhYXMh98WNb_0RU7jzSXUP1xx8anx9G-1Pu358He7-tkYK21INcCdBEmGbRS06QmF7Xf2svQGWqd2TgZpbro0GvpRYQA5JTA3iPu2M3vbQohHL5y-qR8OijZCewk_gC0KUeT</recordid><startdate>200703</startdate><enddate>200703</enddate><creator>Nahar, J.</creator><creator>Chen, Y.-P.P.</creator><creator>Shawkat Ali, A.B.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200703</creationdate><title>Microarray Classification and Rule Based Cancer Identification</title><author>Nahar, J. ; Chen, Y.-P.P. ; Shawkat Ali, A.B.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-71ac5006f0b2e744bb4bcf7d7d782e69a5c92e6b9446fc3d72d1f0e0ac4138d33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Biological cells</topic><topic>Cancer</topic><topic>Cells (biology)</topic><topic>Diseases</topic><topic>Drugs</topic><topic>Entropy</topic><topic>Gene expression</topic><topic>Neoplasms</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Nahar, J.</creatorcontrib><creatorcontrib>Chen, Y.-P.P.</creatorcontrib><creatorcontrib>Shawkat Ali, A.B.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nahar, J.</au><au>Chen, Y.-P.P.</au><au>Shawkat Ali, A.B.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Microarray Classification and Rule Based Cancer Identification</atitle><btitle>2007 International Conference on Information and Communication Technology</btitle><stitle>ICICT</stitle><date>2007-03</date><risdate>2007</risdate><spage>43</spage><epage>46</epage><pages>43-46</pages><isbn>9789843233943</isbn><isbn>9843233948</isbn><abstract>Microarray analysis creates a clear scenario for the complete transcription profile of cells that facilitate drug and therapeutics development, disease diagnosis and enable us to take an in depth look at cell biology. One of the key challenges in microarray analysis, especially in cancerous gene expression profiles, is to identify genes or groups of genes that are highly responsible for the existence of a tumor in a cell. Our proposed modified algorithm support vector machine (SVM) is used to classify cancer related 5 microarray data and observed improved performance than previously used Interesting rule group (IRG), classification based on associations (CBA), and even a different version of SVM algorithm. Finally we use entropy measure through rule based learning algorithm to extract the responsible genes causes for cancer for each microarray problem. The rules are generated with higher acceptability.</abstract><pub>IEEE</pub><doi>10.1109/ICICT.2007.375339</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9789843233943 |
ispartof | 2007 International Conference on Information and Communication Technology, 2007, p.43-46 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4261362 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Biological cells Cancer Cells (biology) Diseases Drugs Entropy Gene expression Neoplasms Support vector machine classification Support vector machines |
title | Microarray Classification and Rule Based Cancer Identification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A41%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Microarray%20Classification%20and%20Rule%20Based%20Cancer%20Identification&rft.btitle=2007%20International%20Conference%20on%20Information%20and%20Communication%20Technology&rft.au=Nahar,%20J.&rft.date=2007-03&rft.spage=43&rft.epage=46&rft.pages=43-46&rft.isbn=9789843233943&rft.isbn_list=9843233948&rft_id=info:doi/10.1109/ICICT.2007.375339&rft_dat=%3Cieee_6IE%3E4261362%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4261362&rfr_iscdi=true |