Microarray Classification and Rule Based Cancer Identification

Microarray analysis creates a clear scenario for the complete transcription profile of cells that facilitate drug and therapeutics development, disease diagnosis and enable us to take an in depth look at cell biology. One of the key challenges in microarray analysis, especially in cancerous gene exp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nahar, J., Chen, Y.-P.P., Shawkat Ali, A.B.M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 46
container_issue
container_start_page 43
container_title
container_volume
creator Nahar, J.
Chen, Y.-P.P.
Shawkat Ali, A.B.M.
description Microarray analysis creates a clear scenario for the complete transcription profile of cells that facilitate drug and therapeutics development, disease diagnosis and enable us to take an in depth look at cell biology. One of the key challenges in microarray analysis, especially in cancerous gene expression profiles, is to identify genes or groups of genes that are highly responsible for the existence of a tumor in a cell. Our proposed modified algorithm support vector machine (SVM) is used to classify cancer related 5 microarray data and observed improved performance than previously used Interesting rule group (IRG), classification based on associations (CBA), and even a different version of SVM algorithm. Finally we use entropy measure through rule based learning algorithm to extract the responsible genes causes for cancer for each microarray problem. The rules are generated with higher acceptability.
doi_str_mv 10.1109/ICICT.2007.375339
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4261362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4261362</ieee_id><sourcerecordid>4261362</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-71ac5006f0b2e744bb4bcf7d7d782e69a5c92e6b9446fc3d72d1f0e0ac4138d33</originalsourceid><addsrcrecordid>eNo9jM1KxDAUhQMiKGMfQNzkBVpvctOm2Qga_CmMCNL9cJsfiNSOJHUxb29B8ZzFxweHw9i1gEYIMLeDHezYSADdoG4RzRmrjO5Nr1BupvCCVaV8wBY0rcD2kt29JpePlDOduJ2plBSTozUdF06L5-_fc-APVILnlhYXMh98WNb_0RU7jzSXUP1xx8anx9G-1Pu358He7-tkYK21INcCdBEmGbRS06QmF7Xf2svQGWqd2TgZpbro0GvpRYQA5JTA3iPu2M3vbQohHL5y-qR8OijZCewk_gC0KUeT</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Microarray Classification and Rule Based Cancer Identification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Nahar, J. ; Chen, Y.-P.P. ; Shawkat Ali, A.B.M.</creator><creatorcontrib>Nahar, J. ; Chen, Y.-P.P. ; Shawkat Ali, A.B.M.</creatorcontrib><description>Microarray analysis creates a clear scenario for the complete transcription profile of cells that facilitate drug and therapeutics development, disease diagnosis and enable us to take an in depth look at cell biology. One of the key challenges in microarray analysis, especially in cancerous gene expression profiles, is to identify genes or groups of genes that are highly responsible for the existence of a tumor in a cell. Our proposed modified algorithm support vector machine (SVM) is used to classify cancer related 5 microarray data and observed improved performance than previously used Interesting rule group (IRG), classification based on associations (CBA), and even a different version of SVM algorithm. Finally we use entropy measure through rule based learning algorithm to extract the responsible genes causes for cancer for each microarray problem. The rules are generated with higher acceptability.</description><identifier>ISBN: 9789843233943</identifier><identifier>ISBN: 9843233948</identifier><identifier>DOI: 10.1109/ICICT.2007.375339</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological cells ; Cancer ; Cells (biology) ; Diseases ; Drugs ; Entropy ; Gene expression ; Neoplasms ; Support vector machine classification ; Support vector machines</subject><ispartof>2007 International Conference on Information and Communication Technology, 2007, p.43-46</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4261362$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4261362$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nahar, J.</creatorcontrib><creatorcontrib>Chen, Y.-P.P.</creatorcontrib><creatorcontrib>Shawkat Ali, A.B.M.</creatorcontrib><title>Microarray Classification and Rule Based Cancer Identification</title><title>2007 International Conference on Information and Communication Technology</title><addtitle>ICICT</addtitle><description>Microarray analysis creates a clear scenario for the complete transcription profile of cells that facilitate drug and therapeutics development, disease diagnosis and enable us to take an in depth look at cell biology. One of the key challenges in microarray analysis, especially in cancerous gene expression profiles, is to identify genes or groups of genes that are highly responsible for the existence of a tumor in a cell. Our proposed modified algorithm support vector machine (SVM) is used to classify cancer related 5 microarray data and observed improved performance than previously used Interesting rule group (IRG), classification based on associations (CBA), and even a different version of SVM algorithm. Finally we use entropy measure through rule based learning algorithm to extract the responsible genes causes for cancer for each microarray problem. The rules are generated with higher acceptability.</description><subject>Biological cells</subject><subject>Cancer</subject><subject>Cells (biology)</subject><subject>Diseases</subject><subject>Drugs</subject><subject>Entropy</subject><subject>Gene expression</subject><subject>Neoplasms</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><isbn>9789843233943</isbn><isbn>9843233948</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9jM1KxDAUhQMiKGMfQNzkBVpvctOm2Qga_CmMCNL9cJsfiNSOJHUxb29B8ZzFxweHw9i1gEYIMLeDHezYSADdoG4RzRmrjO5Nr1BupvCCVaV8wBY0rcD2kt29JpePlDOduJ2plBSTozUdF06L5-_fc-APVILnlhYXMh98WNb_0RU7jzSXUP1xx8anx9G-1Pu358He7-tkYK21INcCdBEmGbRS06QmF7Xf2svQGWqd2TgZpbro0GvpRYQA5JTA3iPu2M3vbQohHL5y-qR8OijZCewk_gC0KUeT</recordid><startdate>200703</startdate><enddate>200703</enddate><creator>Nahar, J.</creator><creator>Chen, Y.-P.P.</creator><creator>Shawkat Ali, A.B.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200703</creationdate><title>Microarray Classification and Rule Based Cancer Identification</title><author>Nahar, J. ; Chen, Y.-P.P. ; Shawkat Ali, A.B.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-71ac5006f0b2e744bb4bcf7d7d782e69a5c92e6b9446fc3d72d1f0e0ac4138d33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Biological cells</topic><topic>Cancer</topic><topic>Cells (biology)</topic><topic>Diseases</topic><topic>Drugs</topic><topic>Entropy</topic><topic>Gene expression</topic><topic>Neoplasms</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Nahar, J.</creatorcontrib><creatorcontrib>Chen, Y.-P.P.</creatorcontrib><creatorcontrib>Shawkat Ali, A.B.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nahar, J.</au><au>Chen, Y.-P.P.</au><au>Shawkat Ali, A.B.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Microarray Classification and Rule Based Cancer Identification</atitle><btitle>2007 International Conference on Information and Communication Technology</btitle><stitle>ICICT</stitle><date>2007-03</date><risdate>2007</risdate><spage>43</spage><epage>46</epage><pages>43-46</pages><isbn>9789843233943</isbn><isbn>9843233948</isbn><abstract>Microarray analysis creates a clear scenario for the complete transcription profile of cells that facilitate drug and therapeutics development, disease diagnosis and enable us to take an in depth look at cell biology. One of the key challenges in microarray analysis, especially in cancerous gene expression profiles, is to identify genes or groups of genes that are highly responsible for the existence of a tumor in a cell. Our proposed modified algorithm support vector machine (SVM) is used to classify cancer related 5 microarray data and observed improved performance than previously used Interesting rule group (IRG), classification based on associations (CBA), and even a different version of SVM algorithm. Finally we use entropy measure through rule based learning algorithm to extract the responsible genes causes for cancer for each microarray problem. The rules are generated with higher acceptability.</abstract><pub>IEEE</pub><doi>10.1109/ICICT.2007.375339</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9789843233943
ispartof 2007 International Conference on Information and Communication Technology, 2007, p.43-46
issn
language eng
recordid cdi_ieee_primary_4261362
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biological cells
Cancer
Cells (biology)
Diseases
Drugs
Entropy
Gene expression
Neoplasms
Support vector machine classification
Support vector machines
title Microarray Classification and Rule Based Cancer Identification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A41%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Microarray%20Classification%20and%20Rule%20Based%20Cancer%20Identification&rft.btitle=2007%20International%20Conference%20on%20Information%20and%20Communication%20Technology&rft.au=Nahar,%20J.&rft.date=2007-03&rft.spage=43&rft.epage=46&rft.pages=43-46&rft.isbn=9789843233943&rft.isbn_list=9843233948&rft_id=info:doi/10.1109/ICICT.2007.375339&rft_dat=%3Cieee_6IE%3E4261362%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4261362&rfr_iscdi=true