Simulating Threats Propagation within the NSP Infrastructure

Threats such as computer worms, Spyware and Trojans account for more than 10% of the total traffic of a network service providers (NSP). The NSP traffic can be monitored and cleaned by distributed network intrusion detection system (DNIDS) that may be deployed on the NSP routers/links. In this study...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Puzis, Rami, Tubi, Meytal, Tahan, Gil, Elovici, Yuval
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 380
container_issue
container_start_page 380
container_title
container_volume
creator Puzis, Rami
Tubi, Meytal
Tahan, Gil
Elovici, Yuval
description Threats such as computer worms, Spyware and Trojans account for more than 10% of the total traffic of a network service providers (NSP). The NSP traffic can be monitored and cleaned by distributed network intrusion detection system (DNIDS) that may be deployed on the NSP routers/links. In this study we choose which routers/links to protect based on group betweenness centrality index that is used as a measure of their collaborative influence on the communication in the NSP infrastructure. During the current study we developed a framework aimed at slowing down or even preventing the propagation of known threats. In the first part of the framework the influential group of routers/links has to be located. In the second part we analyze parallel propagation of multiple types of threats in the NSP infrastructure using the susceptible infective removed model of epidemic propagation.
doi_str_mv 10.1109/ISI.2007.379526
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4258740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4258740</ieee_id><sourcerecordid>4258740</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-c1d44438572957c58bbdcdb4baca7be83d914f22ca0407fe34690892e299fb233</originalsourceid><addsrcrecordid>eNotzEFLwzAYgOF4ENS5swcv-QOtX758bRrwIkNdYeigPXgbSZquka0baYr47xX09MJzeBm7E5ALAfqhbuocAVQulS6wvGA3gpBISNQfV2w5TZ8AIFRJAtU1e2zCcT6YFMY9b4foTZr4Np7OZv9rp5F_hTSEkafB87dmy-uxj2ZKcXZpjv6WXfbmMPnlfxesfXluV-ts8_5ar542WdCQMic6IpJVoVAXyhWVtZ3rLFnjjLK-kp0W1CM6AwSq95JKDZVGj1r3FqVcsPu_bfDe784xHE383hEWlSKQPzHaReU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Simulating Threats Propagation within the NSP Infrastructure</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Puzis, Rami ; Tubi, Meytal ; Tahan, Gil ; Elovici, Yuval</creator><creatorcontrib>Puzis, Rami ; Tubi, Meytal ; Tahan, Gil ; Elovici, Yuval</creatorcontrib><description>Threats such as computer worms, Spyware and Trojans account for more than 10% of the total traffic of a network service providers (NSP). The NSP traffic can be monitored and cleaned by distributed network intrusion detection system (DNIDS) that may be deployed on the NSP routers/links. In this study we choose which routers/links to protect based on group betweenness centrality index that is used as a measure of their collaborative influence on the communication in the NSP infrastructure. During the current study we developed a framework aimed at slowing down or even preventing the propagation of known threats. In the first part of the framework the influential group of routers/links has to be located. In the second part we analyze parallel propagation of multiple types of threats in the NSP infrastructure using the susceptible infective removed model of epidemic propagation.</description><identifier>EISBN: 142441329X</identifier><identifier>EISBN: 9781424413294</identifier><identifier>DOI: 10.1109/ISI.2007.379526</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Computer simulation ; Computer viruses ; Computer worms ; Gas insulated transmission lines ; Intrusion detection ; Monitoring ; Protection ; Telecommunication traffic ; Traffic control</subject><ispartof>2007 IEEE Intelligence and Security Informatics, 2007, p.380-380</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4258740$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4258740$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Puzis, Rami</creatorcontrib><creatorcontrib>Tubi, Meytal</creatorcontrib><creatorcontrib>Tahan, Gil</creatorcontrib><creatorcontrib>Elovici, Yuval</creatorcontrib><title>Simulating Threats Propagation within the NSP Infrastructure</title><title>2007 IEEE Intelligence and Security Informatics</title><addtitle>ISI</addtitle><description>Threats such as computer worms, Spyware and Trojans account for more than 10% of the total traffic of a network service providers (NSP). The NSP traffic can be monitored and cleaned by distributed network intrusion detection system (DNIDS) that may be deployed on the NSP routers/links. In this study we choose which routers/links to protect based on group betweenness centrality index that is used as a measure of their collaborative influence on the communication in the NSP infrastructure. During the current study we developed a framework aimed at slowing down or even preventing the propagation of known threats. In the first part of the framework the influential group of routers/links has to be located. In the second part we analyze parallel propagation of multiple types of threats in the NSP infrastructure using the susceptible infective removed model of epidemic propagation.</description><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Computer viruses</subject><subject>Computer worms</subject><subject>Gas insulated transmission lines</subject><subject>Intrusion detection</subject><subject>Monitoring</subject><subject>Protection</subject><subject>Telecommunication traffic</subject><subject>Traffic control</subject><isbn>142441329X</isbn><isbn>9781424413294</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotzEFLwzAYgOF4ENS5swcv-QOtX758bRrwIkNdYeigPXgbSZquka0baYr47xX09MJzeBm7E5ALAfqhbuocAVQulS6wvGA3gpBISNQfV2w5TZ8AIFRJAtU1e2zCcT6YFMY9b4foTZr4Np7OZv9rp5F_hTSEkafB87dmy-uxj2ZKcXZpjv6WXfbmMPnlfxesfXluV-ts8_5ar542WdCQMic6IpJVoVAXyhWVtZ3rLFnjjLK-kp0W1CM6AwSq95JKDZVGj1r3FqVcsPu_bfDe784xHE383hEWlSKQPzHaReU</recordid><startdate>200705</startdate><enddate>200705</enddate><creator>Puzis, Rami</creator><creator>Tubi, Meytal</creator><creator>Tahan, Gil</creator><creator>Elovici, Yuval</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200705</creationdate><title>Simulating Threats Propagation within the NSP Infrastructure</title><author>Puzis, Rami ; Tubi, Meytal ; Tahan, Gil ; Elovici, Yuval</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-c1d44438572957c58bbdcdb4baca7be83d914f22ca0407fe34690892e299fb233</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Computer viruses</topic><topic>Computer worms</topic><topic>Gas insulated transmission lines</topic><topic>Intrusion detection</topic><topic>Monitoring</topic><topic>Protection</topic><topic>Telecommunication traffic</topic><topic>Traffic control</topic><toplevel>online_resources</toplevel><creatorcontrib>Puzis, Rami</creatorcontrib><creatorcontrib>Tubi, Meytal</creatorcontrib><creatorcontrib>Tahan, Gil</creatorcontrib><creatorcontrib>Elovici, Yuval</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Puzis, Rami</au><au>Tubi, Meytal</au><au>Tahan, Gil</au><au>Elovici, Yuval</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Simulating Threats Propagation within the NSP Infrastructure</atitle><btitle>2007 IEEE Intelligence and Security Informatics</btitle><stitle>ISI</stitle><date>2007-05</date><risdate>2007</risdate><spage>380</spage><epage>380</epage><pages>380-380</pages><eisbn>142441329X</eisbn><eisbn>9781424413294</eisbn><abstract>Threats such as computer worms, Spyware and Trojans account for more than 10% of the total traffic of a network service providers (NSP). The NSP traffic can be monitored and cleaned by distributed network intrusion detection system (DNIDS) that may be deployed on the NSP routers/links. In this study we choose which routers/links to protect based on group betweenness centrality index that is used as a measure of their collaborative influence on the communication in the NSP infrastructure. During the current study we developed a framework aimed at slowing down or even preventing the propagation of known threats. In the first part of the framework the influential group of routers/links has to be located. In the second part we analyze parallel propagation of multiple types of threats in the NSP infrastructure using the susceptible infective removed model of epidemic propagation.</abstract><pub>IEEE</pub><doi>10.1109/ISI.2007.379526</doi><tpages>1</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISBN: 142441329X
ispartof 2007 IEEE Intelligence and Security Informatics, 2007, p.380-380
issn
language eng
recordid cdi_ieee_primary_4258740
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computational modeling
Computer simulation
Computer viruses
Computer worms
Gas insulated transmission lines
Intrusion detection
Monitoring
Protection
Telecommunication traffic
Traffic control
title Simulating Threats Propagation within the NSP Infrastructure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T15%3A48%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Simulating%20Threats%20Propagation%20within%20the%20NSP%20Infrastructure&rft.btitle=2007%20IEEE%20Intelligence%20and%20Security%20Informatics&rft.au=Puzis,%20Rami&rft.date=2007-05&rft.spage=380&rft.epage=380&rft.pages=380-380&rft_id=info:doi/10.1109/ISI.2007.379526&rft_dat=%3Cieee_6IE%3E4258740%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=142441329X&rft.eisbn_list=9781424413294&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4258740&rfr_iscdi=true